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Abstract

A genetic local search (GLS) algorithm for optimal design of multimachine power system stabilizers (PSSs) is presented in this paper. The
proposed approach hybridizes the genetic algorithm (GA) with a heuristic local search in order to combine their strengths and overcome their
shortcomings. The potential of the proposed approach for optimal parameter settings of the widely used conventional lead—lag PSSs has been
investigated. Unlike the conventional optimization techniques, the proposed approach is robust to the initial guess. The performance of the
proposed GLS-based PSS (GLSPSS) under different disturbances, loading conditions, and system configurations is investigated for different
multimachine power systems. Eigenvalue analysis and simulation results show the effectiveness and robustness of the proposed GLSPSS to
damp out local as well as interarea modes of oscillations and work effectively over a wide range of loading conditions and system

configurations. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Power systems experience low-frequency oscillations due
to disturbances. The oscillations may sustain and grow to
cause system separation if no adequate damping is available
[1,2]. DeMello and Concordia [2] presented the concepts of
synchronous machine stability as affected by excitation
control. They established an understanding of the stabilizing
requirements for static excitation systems. In recent years,
several approaches based on modern control theory have
been applied to power system stabilizer (PSS) design
problems. These include optimal control, adaptive control,
variable structure control, and intelligent control [3—5].

Despite the potential of modern control techniques with
different structures, power system utilities still prefer the
conventional lead—lag PSS structure [6—8]. The reasons
behind that might be the ease of on-line tuning and the
lack of assurance of the stability related to some adaptive
or variable structure techniques. Kundur et al. [8] have
presented a comprehensive analysis of the effects of the
different conventional PSS parameters on the overall
dynamic performance of the power system. It is shown
that the appropriate selection of conventional lead-lag
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PSS parameters results in satisfactory performance during
system upsets.

Different techniques of sequential design of PSSs are
presented in Refs. [9,10] to damp out one of the electrome-
chanical modes at a time. Generally, the dynamic interac-
tion effects among various modes of the machines are found
to have significant influence on the stabilizer settings.
Therefore, considering the application of stabilizer to one
machine at a time may not finally lead to an overall optimal
choice of PSS parameters. Moreover, the stabilizers
designed to damp one mode can produce adverse effects
in other modes. In addition, the optimal sequence of design
is a very involved question. The sequential design of PSSs is
avoided in Refs. [11-13] where various methods for simul-
taneous tuning of PSSs in multimachine power systems are
proposed. Unfortunately, the proposed techniques are itera-
tive and require heavy computation burden due to the reduc-
tion procedure of the system order. In addition, the
initialization step of these algorithms is crucial and affects
the final dynamic response of the controlled system. Hence,
different designs assigning the same set of eigenvalues were
simply obtained by using different initializations. Therefore,
a final selection criterion is required to avoid long runs of
validation tests on the nonlinear model. A gradient proce-
dure for optimization of PSS parameters is presented in Ref.
[14]. Unfortunately, the optimization process requires heavy
computational burden and suffers from slow convergence.

0142-0615/00/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0142-0615(00)00096-X



786 M.A. Abido / Electrical Power and Energy Systems 23 (2001) 785-794

>

OF

N
~

O
_—_176

e

Fig. 1. Single-line diagram of three-machine nine-bus system.

In addition, the search process is susceptible to be trapped in
local minima and the solution obtained will not be optimal.

Recently, heuristic search algorithms such as genetic
algorithm (GA) [15,16], tabu search algorithm [17], and
simulated annealing [18] have been applied to the problem
of PSS design. The results are promising and confirm the
potential of these algorithms for the optimal settings of PSS
parameters. Unlike other optimization techniques, GA
works with a population of strings that represent different
potential solutions. Therefore, GA has implicit parallelism
that enables it to search the problem space globally and the
optima can be located more quickly when applied to
complex optimization problem. Unfortunately, recent
research has identified some deficiencies in GA perfor-
mance [19]. This degradation in efficiency is apparent in
applications with highly epistatic objective functions, i.e.
where the parameters being optimized are highly correlated.
In addition, the premature convergence of GA represents a
major problem.

In this paper, a hybrid off-line tuning approach to PSS
design problem is developed and presented. In this
approach, GA is hybridized with a local search algorithm
to enhance its capability of exploring the search space and
overcome the premature convergence. The design problem
is formulated as an optimization problem with mild
constraints and an eigenvalue-based objective function.

Table 1
Generator loadings in pu

Gen Case 1 Case 2 Case 3

P 0 P 0 P 0
G, 0.72 0.27 2.21 1.09 0.33 1.12
G, 1.63 0.07 1.92 0.56 2.00 0.57

G; 0.85 —0.11 1.28 0.36 1.50 0.38

Then genetic local search (GLS) algorithm is employed to
solve this optimization problem and search for the optimal
settings of PSS parameters. The proposed design approach
has been applied to different multimachine power systems.
Eigenvalue analysis and simulation results have been
carried out to assess the effectiveness and robustness of
the proposed GLSPSS to damp out the electromechanical
modes of oscillations and enhance the dynamic stability of
power systems.

2. Problem statement

2.1. System model and PSS structure

A power system can be modeled by a set of nonlinear
differential equations as:

X =f(X,U) (1

where X is the vector of the state variables and U is the

Table 2
Loads in pu
Load Case 1 Case 2 Case 3

P 0 P 0 P 0
A 1.25 0.50 2.00 0.80 1.50 0.90
B 0.90 0.30 1.80 0.60 1.20 0.80
C 1.00 0.35 1.50 0.60 1.00 0.50
Table 3

The optimal settings of the proposed GLSPSS

k T, T;
G, 8.7586 0.1574 0.1697
G; 0.0782 0.6049 0.6748
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Fig. 2. Objective function convergence with different initializations.

vector of input variables. In this study, X = [, w, E ﬁl, Efd]T
and U is the PSS output signals.

In the design of PSSs, the linearized incremental models
around an equilibrium point are usually employed [1,2].
Therefore, the state equation of a power system with n
machines and npsg stabilizers can be written as:

AX = AAX + BU (@)

where A is a 4n X 4n matrix and equals 9f/dX, while B is a
4n X npgg matrix and equals 9f/0U. Both A and B are eval-
uated at the equilibrium point. AX is a 4n X 1 state vector
while U is a npgg X 1 input vector.
A widely used conventional lead—lag PSS is considered
in this study. It can be described as [1,2]
sTy, (1 +sTy) (A + sT5)

U =K, Aw; 3
PR, (I +sTy) (1 +sTy - )

where T, is the washout time constant, U; is the PSS output
signal at the ith machine, and Aw, is the speed deviation of
this machine. The time constants Ty, 75, and T4 are usually
prespecified [11]. The stabilizer gain K; and time constants
Ty; and T3; still need to be optimized.

2.2. Objective function and PSS tuning

To increase the system damping to electromechanical
modes, an objective function J defined below is considered.

J = max{Re();), i € set of electromechanical modes} (4)
Where Re(A;) is the real part of the ith eigenvalue associated

Table 4
Electromechanical mode eigenvalues without PSSs

with electromechanical modes. This objective function is
proposed to shift these eigenvalues to the left of s-plane in
order to improve the system damping factor and settling
time and insure some degree of relative stability.

The problem constraints are the optimized parameter
bounds. Therefore, the design problem can be formulated
as the following optimization problem.

Minimize J (®))
Subject to

K™ =K = K™ (©6)
" =Ty, =< TH™ (7
5" = Ty = T3 ®)

Typical ranges of these parameters are [0.01-50] for K;
and [0.1-1.0] for T}; and T5; [1]. The time constants T, T,
and 7y are set as 5, 0.05, and 0.05 s, respectively [16].

The proposed approach employs GLS algorithm to solve
this optimization problem and search for optimal set of PSS
parameters, {K;, Ty;, T3;, i = 1,2, ...,npss }.

3. Genetic local search
3.1. Overview

GA is an exploratory search and optimization procedure
that is devised on the principles of natural evolution and

Table 5
Electromechanical mode eigenvalues with the proposed GLSPSSs

Case 1 Case 2 Case 3

Case 1 Case 2 Case 3

—0.011 = j9.068
—0.778 = j13.86

—0.021 * j8.907
—0.519 +j13.83

0.377 = i8.865
—0.336 = §13.69

—3.726 = §8.132
—3.724 * j18.957

—2.398 = §7.577
—4.079 + j19.07

—2.649 * 8.186
—~3.910 +j18.75
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Fig. 3. System response under fault disturbance with case 2.

population genetics. Unlike other optimization techniques,
GA works with a population of strings that represent
different potential solutions, each corresponding to a sample
point from the search space. For each generation, all the

populations are evaluated based on

a certain objective

function. The fittest strings have more chances of evolving
to the next generation.
Typically, the GA starts with little or no knowledge of the
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Fig. 4. Single-line diagram of 10-machine 39-bus system.

correct solution depending entirely on responses from inter-
acting environment and their evolution operators to arrive at
optimal solutions. In general, GA includes three basic
operations: reproduction, crossover, and mutation [20].
These operations can be defined as follows.

Reproduction is a process in which a new generation of
population is formed by selecting the fittest individuals in
the current population. This is the survival of the fittest
mechanism. Strings selected for reproduction are copied
and entered to the mating pool.

Crossover is the most dominant operator in GA. It is
responsible for producing new offsprings by selecting two
strings from the mating pool and exchanging portions of
their structures. The new offsprings may replace the weaker
individuals in the population. With the crossover operation,
GA is able to acquire more information with the generated
individuals and the search space is thus extended and more
complete. The probability of crossover is set arbitrarily
(typically 0.6—0.9 [20]). The crossover will be applied if a
random number generated between 0 and 1 is less than the
preset value of crossover probability.

Mutation is an operation to alter the value of a random
position in a string to avoid a loss of important information
at a particular position. Generally, mutation is a local
operator, which is applied with a very low probability.
Similar to crossover, the mutation probability is set
arbitrarily (typically 0.001-0.01 [20]).

Recent research has identified some deficiencies in GA
performance [19]. This degradation in efficiency is apparent
in applications with highly epistatic objective functions, i.e.

where the parameters being optimized are highly correlated.
In addition, the premature convergence of GA represents a
major problem. This problem occurs when the population of
chromosomes reaches a configuration such that crossover no
longer produces offsprings that can outperform their
parents. Under such circumstances, all standard forms of
crossover simply regenerate the current parents. Any further
optimization relies solely on bit mutation and can be quite
slow. At this stage, hill-climbing heuristics should be
employed to search for improvement [21].

In this study, a hybrid GLS technique is presented to
integrate the use of GA and local search in order to combine
their different strengths and overcome their shortcomings. It
is important to clarify that the proposed approach brings the
parallelism capabilities of GA to the hill-climbing capabil-
ities of local search in the sense that the local search
concepts are imbedded in GA operations.

Table 6
The optimal settings of the proposed GLSPSSs

k T, T
G, 31.134 0.870 0.636
G; 45.406 0.522 0.555
G, 30.792 0.875 0.893
Gs 48.241 0.185 0.123
G 37.146 0.650 0.978
G, 6.207 0.429 0.291
Gy 25.904 0.781 0.903
Gy 46.725 0.190 0.137
G 32.551 0.983 0.997
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Fig. 5. Objective function convergence.

The advantages of GLS over other traditional optimiza-

tion techniques can be summarized as follows:

Alike GA, GLS has implicit parallelism. This property
ensures GLS to be less susceptible to getting trapped on
local minima.

GLS uses payoff (performance index or objective func-
tion) information to guide the search in the problem
space. Therefore, it can easily deal with non-differenti-
able objective functions that are the real-life optimization
problems. Additionally, this property relieves GLS of
assumptions and approximations, which are often
required by traditional optimization methods for many
practical optimization problems.

GLS uses probabilistic transition rules to make decisions,
not deterministic rules. Hence, GLS is a kind of stochas-
tic optimization algorithm that can search a complicated
and uncertain area to find the global optimum. This
makes GLS more flexible and robust than conventional
methods.

GLS employs local optimization concepts in generation
production to overcome the premature convergence of
GA.

3.2. GLS algorithm

In GLS algorithm, the population has n candidate
solutions. Each candidate solution is an m-dimensional
real-valued vector, where m is the number of optimized
parameters. The GLS algorithm can be described in the
following steps.

Step 1: Set the generation counter kK = 0 and generate
randomly 7 initial solutions, X, = {x;, i = 1,...,n}. The
ith initial solution x; can be written as x; = [p;...pj...Pm],
where the jth optimized parameter p; is generated by
randomly selecting a value with uniform probability

over its search space [p;"",p;""]. These initial solutions

constitute the parent population at the initial generation
Xo. Each individual of X is evaluated using the objective
function J. Set X = X,,.

Step 2: Optimize locally each individual in X. Replace
each individual in X by its locally optimized version.
Update the objective function values accordingly.

Step 3: Search for the minimum value of the objective
function, J;,. Set the solution associated with J;, as the
best solution, Xy, With an objective function of Jy.
Step 4: Check the stopping criteria. If one of them is
satisfied then stop, else set k = k + 1 and go to Step 5.
Step 5: Set the population counter i = 0.

Step 6: Draw randomly, with uniform probability, two
solutions x; and x, from X. Apply the genetic crossover
and mutation operators obtaining x;.

Step 7: Optimize locally the solution x; obtaining x3.
Step 8: Check if xj is better than the worst solution in X
and different from all solutions in X then replace the worst
solution in X by x5 and the value of its objective by that of
X3.

Step 9: If i = n go to Step 3, else set i = i + 1 and go back
to Step 6.

In this study, the search will terminate if one of the

following criteria is satisfied: (a) the number of generations

Table 7

Electromechanical mode eigenvalues without PSSs

Case 1

Case 2

Case 3

0.191 = j5.808

0.088 = j4.002
—0.028 = j9.649
—0.034 * j6.415
—0.056 = j7.135
—0.093 = i8.117
—0.172 * j9.692
—0.220 = j8.013
—0.270 = j9.341

0.195 + j5.716
0.121 *+ j3.798
0.097 * j6.006

—0.032 + j9.694

—0.104 = j8.015

—0.109 = j6.515

—0.168 + j9.715

—0.204 * j8.058

—0.250 + j9.268

0.152 +i5.763
0.095 *+ j3.837
0.033 * i6.852

—0.026 =+ 9.659

—0.094 *+ j8.120

—0.100 =+ j6.038

—0.171 * j9.696

—0.219 * j8.000

—0.259 + §9.320
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Table 8
Electromechanical mode eigenvalues with the Proposed GLSPSSs

Case 1 Case 2 Case 3

—1.693 = j2.927
—1.694 + j11.04
—~1.694 = j11.75
—1.706 = j10.07
—1.732 = j13.31
—2.022 + j9.934
—1.830 = j10.85
—1.819 = j9.020
—2.087 + j3.472

—1.162 = j3.281
—1.676 = j10.99
—1.678 = j11.71
—1.756 + j9.193
—1.673 £i13.09
—1.882 +j10.12
—1.904 = j10.47
—2.397 + j8.952
—1.806 = j3.058

—1.400 * j2.679
~1.684 = j11.05
—1.690 * j11.74
—1.716 = j9.757
—1.717 £j13.23
—1.807 = 10.09
—1.831 +10.84
—2.319 = j7.639
—2.255 *i3.597

since the last change of the best solution is greater than a
prespecified number; and (b) the number of generations
reaches the maximum allowable number.

To assess the effectiveness and robustness of the
proposed PSS design approach, two different examples of
multimachine power systems have been considered and
examined under different loading conditions and system
configurations.

0.004 —

0.002 +

Aco8 (pu)

-0.002

-0.004

4. Example 1: three-machine system
4.1. Test system and proposed GLSPSS design

In this example, the three-machine nine-bus power system
shown in Fig. 1 is considered. Details of the system data are
given in Ref. [22]. The participation factor method shows that
the generators G, and Gj are the optimum locations for instal-
ling PSSs. Hence, the optimized parameters are K;, Ty;, and Tx;,
i = 2,3. These parameters are optimized at the operating point
specified as case 1. The generator and system loading levels at
this case are given in Tables 1 and 2 respectively.

To demonstrate the robustness of the proposed approach
to the initial solution, different initializations have been
considered. The final values of the optimized parameters
are given in Table 3. The objective function convergence
is shown in Fig. 2. It is clear that unlike the conventional
methods [11-13], the proposed approach finally leads to the
optimal solution regardless the initial one. Therefore, the
proposed approach can be used to improve the solution
quality of other traditional methods.

0.00 2.00
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Fig. 6. System response for six-cycle fault disturbance with case 1.
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Fig. 7. System response for six-cycle fault disturbance with case 2.

4.2. Eigenvalue analysis and simulation results

To demonstrate the effectiveness and robustness of the
proposed GLSPSS over a wide range of loading conditions,
two different cases designated as cases 2 and 3 are consid-
ered. The generator and system loading levels at these cases
are given in Tables 1 and 2, respectively. Eigenvalue analy-
sis shows that the system has two local electromechanical
modes of oscillations. Without PSSs, these modes, given in
Table 4, are poorly damped and some of them are unstable.
The electromechanical modes with the proposed GLSPSSs
are given in Table 5. It is obvious that the eigenvalues have
been shifted to the left in the s-plane and system damping to
the electromechanical modes is greatly improved.

For further illustration, a six-cycle three-phase fault
disturbance at bus 7 at the end of lines 5-7 is considered
for time-domain simulations. The performance of the
proposed GLSPSSs is compared to that of GA-based PSS
given in Ref. [23]. The system response under the fault
disturbance with case 2 is shown in Fig. 3. It is clear that
the system performance with the proposed GLSPSSs is

much better and the oscillations are damped out much
faster. This illustrates the superiority of the proposed
GLSPSS over that designed using GA. It can be concluded
that, the proposed GLSPSSs are quite efficient to damp out
the low-frequency oscillations.

5. Example 2: New England power system
5.1. Test system and proposed GLSPSS design

The 10-machine 39-bus New England power system
shown in Fig. 4 is considered in this example. Genera-
tor G; is an equivalent power source representing parts
of the US—Canadian interconnection system. Details of
the system data are given in Ref. [24]. In this study, all
generators except G; are equipped with the proposed
GLSPSSs, which leads to 27 optimized parameters.
The final values of the optimized parameters are given
in Table 6. The objective function convergence is
shown in Fig. 5.
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Fig. 8. System response for six-cycle fault disturbance with case 3.

5.2. Eigenvalue analysis and simulation results

It is worth mentioning that the optimization process has
been carried out at the operating condition specified as
case 1. To demonstrate the effectiveness of the proposed
GLSPSS, two additional cases that represent different
system configurations are considered. Specifically, case 2
represents the outage of lines 21-22 while case 3 represents
the outage of lines 14—15. The system has nine electro-
mechanical modes of oscillations and some of them are
classified as interarea modes. Without PSSs, both local
and interarea modes are given in Table 7. It is clear that
these modes are poorly damped and some of them are
unstable. The electromechanical modes with the
proposed GLSPSSs are given in Table 8. It is obvious
that the eigenvalues have been shifted to the left in the
s-plane and the system damping to the electromechani-
cal modes is greatly improved. In comparison with the
results of GA reported in Ref. [16], it is clear that the
proposed GLSPSSs outperform the GAPSSs and the
system damping of electromechanical modes is signifi-

cantly enhanced. This confirms the superiority of GLS
approach to search for the optimal PSS parameters.

For further illustration, a six-cycle three-phase fault
disturbance at bus 29 at the end of lines 26—29 is considered
for the time simulations. The performance of the proposed
GLSPSSs is compared to that of GAPSSs given in Ref. [16].
The speed deviations of Gg and Gg are shown in Figs. 6, 7,
and 8 with cases 1, 2, and 3 respectively. It is clear that the
system performance with the proposed GLSPSSs is much
better and the oscillations are damped out much faster. This
illustrates the superiority of the proposed GLS design
approach to get an optimal or near optimal set of PSS para-
meters. In addition, the proposed GLSPSSs are quite effi-
cient to damp out the local modes as well as the interarea
modes of oscillations.

6. Conclusions

In this study, a genetic local search algorithm is proposed
to the PSS design problem. The proposed design approach
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hybridizes GA with a local search to combine their different
strengths and overcome their drawbacks. The potential of
the proposed design approach has been demonstrated by
applying it to two examples of multimachine power systems
with different disturbances, loading conditions, and system
configurations. Optimization results show that the proposed
approach solution quality is independent of the initialization
step. Eigenvalue analysis reveals the effectiveness and
robustness of the proposed GLSPSS to damp out local as
well as interarea modes of oscillations. In addition, the
simulation results show that the proposed GLSPSSs can
work effectively and robustly over a wide range of loading
conditions and system configurations.
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