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Abstract

Design of a power system stabilizer (PSS) using simulated annealing (SA) heuristic optimization technique is presented in this
paper. Two different PSSs are proposed, namely, simulated annealing based PSS (SPSS) and robust SPSS (RSPSS). The proposed
approach employs SA to search for optimal or near optimal settings of (RSPSS). The proposed approach employs SA to search
for optimal or near optimal settings of PSS parameters. An objective function that shifts the system eigenvalues associated with
the electromechanical modes to the left in the s-plane is proposed. The robustness of the proposed SPSS and RSPSS over a wide
range of loading conditions and system parameter uncertainities is investigated. The nonlinear simulation results show the
effectiveness of the proposed PSSs to damp out the low frequency oscillations and work effectively over a wide range of loading
conditions and system parameter uncertainities. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

For many years, low frequency oscillations have been
observed when large power systems are interconnected
via relatively weak tie lines. In the past two decades, the
utilization of supplementary excitation control signals
for improving the dynamic stability of power systems
has received much attention [1,2]. Nowadays, the con-
ventional power system stabilizer (CPSS) is widely used
by power system utilities. In recent years, several ap-
proaches based on modern control theory have been
applied to PSS design problem. These include optimal
control, adaptive control, variable structure control,
and intelligent control [3–6].

Despite the potential of modern control techniques,
power system utilities still prefer the conventional lead-
lag power system stabilizer (CPSS) structure [7,8]. The
reasons behind that might be the decentralized nature
and the ease of on-line tuning of CPSS and the lack
assurance of the stability related to some adaptive or
variable structure techniques.

Kunder et al. [9] have presented a comprehensive
analysis of the effects of the different CPSS parameters
on the overall dynamic performance of the power sys-
tem. It is shown that the appropriate selection of CPSS
parameters results in satisfactory performance during
system upsets. In addition, Gibbard [10] demonstrated
that the CPSS provide satisfactory damping perfor-
mance over a wide range of system loading conditions.
The robustness nature of the CPSS is due to the fact
that the torque-reference voltage transfer function re-
mains more or less invariant over a wide range of
system conditions. The robustness nature of the CPSS
is due to the fact that the torque-reference voltage
transfer function remains more or less invariant over a
wide range of operating conditions and system configu-
rations. Abdel-Magid et al. [11] presented a genetic
algorithm based approach to PSS design problem. It is
shown that the optimal selection of PSS parameters
results in a robust performance of PSS.

Several PSS design techniques have been reported in
the literature. Generally, most of these techniques are
based on eigenvalue assignment [12–15]. Unfortu-
nately, the proposed techniques are iterative and re-
quire heavy computation burden due to system
reduction procedure. Mathematical programming [16]
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have been applied to the problem of tuning of PSSs.
The problem has been formulated as both a quadratic
and linear programming problem. However, this for-
mulation is carried out at the expense of some conser-
vativeness and the number of constraints becomes
unduly large. A gradient procedure for optimization of
PSS parameters is presented in [17]. The optimization
process requires computations of sensitivity factors and
eigenvectors at each iteration. This gives rise to heavy
computational burden and slow convergence. In addi-
tion, the search process is susceptible to be trapped in
local minima and the solution obtained will not be
optimal. Recently, H� based techniques and sequential
loop closure method [18,19] have been applied to PSS
design problem. However, the importance and
difficulties in the selection of weighting functions of H�

optimization problem have been reported. On the other
hand, the order of the H� based stabilizer is as high as
that of the plant. This gives to complex structure of
such stabilizers and reduces their applicability. Al-
though the sequential loop closure method is well suited
for on-line tuning, there is no analytical tool to decide
the optimal sequence of the loop closure. Hence, PSS
design approach based on SA optimization technique is
proposed in this paper to avoid the shortcomings of the
earlier methods.

SA algorithm [20,21] is a promising heuristic al-
gorithm for handling the combinatorial optimization
problems. It has been theoretically proved that SA
algorithm converges to the optimal solution [20]. An-
other strong feature of SA algorithm is that a compli-
cated mathematical model is not required and the

problem constraints can be easily incorporated [20]. In
power systems, SA has been applied to a number of
power system optimization problems with impressive
successes [22,23]. However, the potential of SA al-
gorithm to PSS design has not been exploited.

In this paper, a novel approach to PSS design by
eigenvalue shift technique using SA algorithm is pro-
posed. The problem of PSS design is formulated as an
optimization problem. Then, SA algorithm is employed
to solve this optimization problem with the aim of
getting optimal settings of PSS parameters. Based on
the number of operating conditions considered in the
design process, two different stabilizers are proposed.
The eigenvalue analysis and the nonlinear stimulation
results have been carried out to assess the robustness
and the effectiveness of the proposed PSSs under differ-
ent disturbances, loading conditions, and system
configurations.

2. Power system model

In this study, a single machine infinite bus system
shown in Fig. 1 is considered. The generator is con-
nected to the infinite bus via a transmission line. The
impedance is Z=R+ jX and the generator has a local
load of admittance YL=g+ jb. The generator is repre-
sented by the third-order model comprising of the
electromechanical swing equation and the generator
internal voltage equation (Eqs. (1) and (2)). The swing
equation is divided to the following equations

��=�b(�−1) (1)

��=
(Pm−Pe−D(�−1))

M
(2)

where, Pm and Pe are the input and the output powers
of the generator respectively; M and D are the inertia
constant and damping coefficient respectively; � and �

are the rotor angle and speed respectively; � is the
derivative operator d/dt. The output power of the
generator can be expressed in terms of the d-axis and
q-axis components of the armature current, i, and
terminal voltage, �, as

Pe=�did+�qiq (3)

the internal voltage, E �q equation is

�E �q=
(Efd− (xd−x �d)id−E �q)

T �do

(4)

Here, Efd is the field voltage; T �do is open circuit field
time constant; xd and x �d are d-axis transient reactance
of the generator respectively.The IEEE Type-STI exci-
tation system shown in Fig. 2 is considered in this
study. It can be described as

Fig. 1. Single machine infinite bus system with local load.

Fig. 2. IEEE Type-ST1 excitation system with conventional lead-lag
PSS.
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�Efd=
(KA(Vref−�+uPSS)−Efd)

TA

(5)

where, KA and TA are the gain and time constant of the
excitation system respectively; Vref is the reference
voltage. As shown in Fig. 2, a conventional lead-lag
PSS is installed at the feedback loop to generate a
stabilizing signal uPSS. In Eq. (5), the terminal voltage �
can be expressed as

�= (�d
2 +�q

2)1/2 (6)

and;

�d=xqiq (7)

�q=E �q−x �did (8)

where xq is the q-axis reactance of the generator.

3. Problem formulation

3.1. Linearized power system model

In the design of PSS damping controller, the lin-
earized incremental model around a nominal operating
point is usually employed [1,2]. Linearizing the expres-
sions of id and iq and substituting into the linear form
of Eqs. (1)– (8) yield the following linearized power
system model
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Here, the control vector uPSS is the PSS output signal.
The values of K1–K6 depend on system parameter and
loading conditions. Expressions of these constants K1–
K6 are given in [1].

3.2. PSS structure

A widely used conventional lead-lag PSS is consid-
ered in this study. Its structure is shown in Fig. 2. In
this structure, TW is the washout time constant and ��

is the speed deviation. The time constants TW, T2, and
T4 are usually prespecified. The stabilizer gain K and
time constants T1 and T3 are remained to be
determined.

4. Simulated annealing algorithm

4.1. O�er�iew

Simulated annealing is an optimization technique
that simulates the physical annealing process in the field
of combinatorial optimization. Annealing is the physi-
cal process of heating up a solid until it melts, followed
by slow cooling it down by decreasing the temperature
of the environment in steps. At each step, the tempera-
ture is maintained constant for a period of time suffi-
cient for the solid to reach thermal equilibrium.

Metropolis et al. [21] proposed a Monte Carlo
method to simulate the process of reaching thermal
equilibrium at a fixed value of the temperature T. In
this method, a randomly generated perturbation of the
current configuration of the solid is applied so that a
trial configuration is obtained. Let EC and Et denote
the energy level of the current and trial configurations
respectively. If Et�Ec, then a lower energy level has
been reached, and the trial configuration is accepted
and becomes the current configuration. On the other
hand, if Et�EC the trial configuration is accepted as
current configuration with probability proportional to
exp(−�E/T), �E=Et−EC. The process continues un-
til the thermal equilibrium is achieved after a large
number of perturbations.

By gradually decreasing the temperature T and re-
peating Metropolis simulation, new lower energy levels
become achievable. As T approaches zero least energy
configurations will have a positive probability of
occurring.

4.2. SA algorithm

At first, the analogy between a physical annealing
process and a combinatorial optimization problem is
based on the following [20]:
� Solutions in an optimization problem are equivalent

to configurations of a physical system.
� The cost of a solution is equivalent to the energy of

a configuration.In addition, a control parameter Cp

is introduced to play the role of the temperature
T.The basic elements of SA are briefly stated and
defined as follows:
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Table 1
Loading conditions and parameter uncertainties

Loading condition (P, Q) Parameter uncertainties
in pu

30% increase of line reactance X(1.0, 0.015) nominal
25% decrease of machine inertia M(1.1, 0.1) heavy

(0.7, −0.3) leading power 30% decrease of field time constant
T �dofactor

chains since the last change of the best solution is
greater than a prespecified number; or (b) the num-
ber of Marko� chains reaches the maximum allow-
able number.
The general algorithm of SA can be described in

steps as follows:
Step 1: Set the initial value of Cp0 and randomly
generate an initial solution xinitial and calculate its
objective function. Set this solution as the current
solution as well as the best solution, i.e. xinitial=
xcurrent=xbest.
Step 2: Randomly generate an n1 of trial solutions in
the neighborhood of the current solution.
Step 3: Check the acceptance criterion of these trial
solutions and calculate the acceptance ratio. If accep-
tance ratio is close to 1 go to step 4; else set Cp0=
�Cp0, ��1, and go back to step 2.
Step 4: Set the chain counter kch=0.
Step 5: Generate a trial solution xtrial. If xtrial satisfies
the acceptance criterion set xcurrent=xtrial,
J(xcurrent)=J(xtrial), and go to step 6; else go to step
6.
Step 6: Check the equilibrium condition. If it is
satisfied go to step 7; else go to step 5.
Step 7: Check the stopping criteria. If one of them is
satisfied then stop; else set kch=kch+ l and Cp=
�Cp, ��1, and go back to Step 5.

5. The proposed design approach

5.1. Loading conditions and parameter uncertainties

In this study, two different SA based PSSs are pro-
posed as follows.
1. The Proposed SPSS: in this case, the PSS parame-

ters are optimized at the nominal operating condi-
tion given in Table 1, i.e. only one loading condition
is considered for PSS parameter tuning. The system
parameters are set at their nominal values given in
the Appendix A and no parameter uncertainties are
considered in this case.

2. The Proposed RSPSS: in this case, the PSS parame-
ters are optimized over a wide range of operating
conditions and system parameter uncertainties.
Three loading conditions represent nominal, heavy,
and leading power factor are considered. Each load-
ing condition is considered without and with the
parameter uncertainties given in Table 1. Hence, the
total number of points considered for the design
process is 12.

5.2. Proposed objecti�e function

To increase the system damping to the electrome-
chanical modes, an objective function J defined below is
proposed.

� Current, trial, and best solutions, xcurrent, xtrial, and
xbest: these solutions are sets of the optimized
parameter values at any iteration.

� Acceptance criterion : at any iteration, the trial solu-
tion can be accepted as the current solution if it
meets one of the following criteria; (a) J(xtrial)�
J(xcurrent); (b) J(xtrial)�J(xcurrent); and exp(−
(J(xtrial)−J(xcurrent))/Cp)� rand(0,1). Here,
rand(0,1) is a random number with domain [0,1] and
J(xtrial)and J(xcurrent) are the objective function val-
ues associated with xtrial and xcurrent respectively.
Criterion (b) indicates that the trial solution is not
necessarily rejected if its objective function is not as
good as that of the current solution with hoping that
a much better solution becomes reachable.

� Acceptance ratio : at a given value of Cp an n1 trial
solutions can be randomly generated. Based on the
acceptance criterion, an n2 of these solutions can be
accepted. The acceptance ratio is defined as n2/n1.

� Cooling schedule : it specifies a set of parameters that
governs the convergence of the algorithm. This set
includes an initial value of control parameter Cp0 a
decrement function for decreasing the value of Cp,
and a finite number of iterations or transitions at
each value of i.e. the length of each homogeneous
Marko� chain. The initial value of Cp should be large
enough to allow virtually all transitions to be ac-
cepted. However, this can be achieved by starting off
at a small value of Cp0 and multiplying it with a
constant � larger than 1, i.e. Cp0=�Cp0. This pro-
cess continues until the acceptance ratio is close to 1.
This is equivalent to heating up process in physical
systems. The decrement function for decreasing the
value of is given by Cp=�Cp where � is a constant
smaller than but close to 1. Typical values lie be-
tween 0.8 and 0.99 [20].

� Equilibrium condition : it occurs when the current
solution does not change for a certain number of
iterations at a given value of Cp. It can be achieved
by generating a large number of transitions at that
value.

� Stopping criteria : these are the conditions under
which the search process will terminate. In this
study, the search will terminate if one of the follow-
ing criteria is satisfied: (a) the number of Marko�
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J= �
�i�� 0

(�0−�i)2 (10)

where �i is the real part of the ith eigenvalue and �0

is a chosen threshold. The value of �0 represents the
desirable level of system damping. This level can be
achieved by shifting the dominant eigenvalues to the
left of s=�0 line in the s-plane. This insures also
some degree of relative stability. The condition �i�
�0 is imposed on J evaluation to consider only the
unstable or poorly damped modes which are mainly
belonging to the electromechanical ones. For the pro-
posed SPSS, there is only one eigenvalue considered
in J calculation. However, the summation has been
carried out over 12 eigenvalues with the proposed
RSPSS.

The problem constraints are the parameter bounds.
Therefore, the design problem can be formulated as
the following optimization problem.

Minimize J (11)

Subject to

Kmin�K�Kmax (12)

T1
min�T1�T1

max (13)

T3
min�T3�T3

max (14)

The proposed approach employs SA algorithm to
solve this optimization problem and search for opti-
mal or near optimal set of PSS parameters, {K, T1,
T3}.

5.3. Application of SA to PSS design

The SA algorithm has been applied to search for
optimal settings of the PSS optimized parameters. In
our implementation, �0 is chosen to be −2.0, i.e. all
the electromechanical mode eigenvalues are shifted to
the left of s= −2.0 vertical line in the s-plane.
Also, the search will terminate if one of the following
conditions is satisfied; (1) best solution does not
change for more than 20 chains; (2) number of
chains reaches 100; or (3) value of the objective func-
tion reaches zero, i.e. all the electromechanical mode
eigenvalues are shifted to the left of s= −2.0
line. It is imperative to point out that, at each itera-
tion during the optimization process, the electrome-
chanical mode eigenvalue is identified using
participation factors method [24] to evaluate the ob-
jective function.

The optimal PSS parameters obtained for the pro-
posed SPSS and RSPSS are given in Table 2. The
convergence rates of the objective functions for the
proposed SPSS and RSPSS are shown in Fig. 3. It is
clear that the proposed approach shifts the electrome-
chanical mode eigenvalues to the left of s= −2.0 line
in few chains. This confirms the potential of SA al-
gorithm to search for optimal values of the tuning
parameters.

6. Robustness of the proposed stabilizers

To assess the robustness of the proposed SPSS and
RSPSS, they are tested over a wide range of operat-
ing conditions and system parameter uncertainties.
The operating range is specified as P� [0.1, 1.2] pu
and Q� [−0.4, 0.4] pu. At each operating condition
within the specified range, the electromechanical
mode eigenvalue is identified using participation fac-
tors method [24] and located in the s-plane.
The results with the proposed SPSS and RSPSS as
well as that of CPSS given in [1] are shown in Figs.
4–7. Two important observations can be drawn
from these results. First, the proposed SPSS is more
robust compared with CPSS. It also provides
more damping to the electromechanical mode. In ad-
dition, the stability region with the CPSS is much
smaller than those of the proposed stabilizers. More-
over, the CPSS fails to stabilize the system at
some operating conditions and parameter uncertain-
ties as shown in Fig. 5(a). This demonstrates the po-
tential of the proposed SA-based approach to the
PSS design problem. Second, considering different op-
erating conditions and parameter uncertainties in the
PSS design problem results in the extension of the
stability margin and robustness as shown in Figs.
4(c)–7(c).

Table 2
Optimal parameters for the proposed SPSS and RSPSS

T1 T3Proposed stabilizer K

0.139319.049 0.2634SPSS
0.1418RSPSS 33.387 0.2131

Fig. 3. Convergence of the objective functions for the proposed SPSS
and RSPSS.
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Fig. 4. Location of the electromechanical mode eigenvalue without
parameter uncertainties, (a) with CPSS; (b) with the proposed SPSS;
(c) with the proposed RSPSS.

that the proposed SPSS and RSPSS outperform the
CPSS. The oscillations with the proposed stabilizers are
damped out much faster. Also, the first swing is much
reduced as shown in Fig. 8. This extends the power
system stability limit and increase its power transfer
capability.

Fig. 5. Location of the electromechanical mode eigenvalue with 40%
uncertainity of X, (a) with CPSS; (b) with the proposed SPSS; (c)
with the proposed RSPSS.

7. Nonlinear simulation results

To evaluate the effectiveness of the proposed SPSS
and RSPSS, nonlinear time domain simulations have
been carried out at four different operating conditions
with different disturbances as given in Table 3. The
system responses are shown in Figs. 8–11. It is clear
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Fig. 6. Location of the electromechanical mode eigenvalue with −5%
uncertainity of M, (a) with CPSS; (b) with the proposed SPSS; (c)
with the proposed RSPSS.

are avoided with the proposed approach. Two different
PSSs, SPSS and RSPSS, are designed based on the
number of operating conditions considered in the opti-
mization process. The robustness and effectiveness of
the proposed SPSS and RSPSS are investigated. The
results show that the proposed stabilizers are robust

Fig. 7. Location of the electromechanical mode eigenvalue with
−50% uncertainity of Tdo� , (a) with CPSS; (b) with the proposed
SPSS; (c) with the proposed RSPSS.

8. Conclusions

In this study, a novel approach based on the simu-
lated annealing algorithm is proposed to the PSS design
problem. The proposed design approach employs SA to
search for optimal settings of conventional lead-lag PSS
parameters. Heavy computations of the design process
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Table 3
Loading conditions and disturbances for nonlinear time simulations

Loading condition (P, Q) in pu Associated disturbance

(1.0, 0.3) 10% pulse of Tm and −10% of M
(1.0, 0.015) 3-phase fault for six cycles at the infinite bus
(1.1, 0.4) 3-phase fault for three cycles at the infinite bus

3-phase fault for six cycles at the infinite bus(1.1, −0.4)

Fig. 8. System response with 10% pulse of Tm and −10% of M disturbance for 6 s and (1.0, 0.3).

Fig. 9. System response with 6-cycle fault disturbance and (1.0, 0.015).
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Fig. 10. System response with 3-cycle fault disturbance and (1.1, 0.4).

Fig. 11. System response with 6-cycle fault disturbance and (1.1, −0.4).

and effective over a wide range of operating conditions
and parameter uncertainties.
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Appendix A

The system data are as follows: M=9.26 s; T �do=
7.76; D=0.0; xd=0.973; xd� =0.19; xq=0.55; R= −
0.034; X=0.997; g=0.249; b=0.262; KA=50;
TA=0.05; �uPSS��0.2 pu; �Efd��7.3 pu.

All resistances and reactances are in pu and time
constants are in seconds.
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