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ABSTRACT: This paper proposes a Neural Network-Based 
method for on-line maximum loadability estimation, for an 
optimized power system voltage stability profile. A 
simulated annealing optimization technique for optimal 
voltage stability profile through out the whole power 
network was used. The minimization of the voltage 
stability index at each individual load bus as well as the 
global voltage stability indicator is obtained through 
adjustment of real power and reactive resources control 
devices. Optimal load buses voltages and angles at the 
input layer and the maximum MVA loading level at the 
output layer accomplished the training of the Radial Basis 
Function Neural Network (RBFNN). The generalization 
capability of the designed Neural Networks under large 
number of operation conditions and contingencies has been 
tested for power systems. Fast performance, accurate 
evaluation and good prediction for maximum loadadbility 
level have been obtained. 
Results of tests conducted on the Six-bus Wale and Hale 
system are presented and discussed. 
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1 INTRODUCTION 
 

The power system ability to maintain constantly 
acceptable bus voltage at each node under normal 
operating conditions, after load increase, following system 
configuration changes or when the system is being 
subjected to a disturbance is a very important characteristic 
of the system. The non-optimized control of VAR 
resources may lead to progressive and uncontrollable drop 
in voltage resulting in an eventual wide spread voltage 
collapse.  

The phenomenon of voltage instability is attributed to 
the power system operation at its maximum transmissible 
power limit, shortage of reactive power resources and 
inadequacy of reactive power compensation tools. A non-
optimized setting of the level or control of the reactive 
resources play an effective role to expedite the voltage 
instability and to speed up reaching the maximum loading 
limit.  
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The main factors contributing to the voltage collapse 
are the generators reactive power limit, voltage control 
limits, load characteristics, reactive compensation devices 
characteristics and their actions. 
 
Voltage stability estimation techniques based on Jacobian 
analysis such as, singular value decomposition, Eigenvalue 
calculations, sensitivity factories, and modal analysis are 
time consuming for a large power system [1- 4]. 
 

 Several indices based methods such as Voltage 
Instability Proximity Index (VIPI) and Voltage Collapse 
Proximity Indicator (VCPI) are used to evaluate voltage 
instability. They are based on multiple load flow solutions 
and give only global picture [5,6]. The transmission 
proximity index that specifies the weakest transmission 
part of the system based on voltage phasor approach 
necessitate the scanning of the whole power system 
structure for several time which is time consuming 
approach [7]. 

The strong tie of the voltage stability problem with the 
reactive power resources and flow in the system raise the 
interest in optimizing the rescheduling of the VAR control 
tools. An optimum VAR picture would maintain a good 
voltage profile and extend the maximum loading capability 
of the power network. 

Several approaches for optimal reactive power picture 
have been reported in the literature. Methods such as non-
linear programming and linear programming algorithms 
were applied. They are complex, time consuming and 
require considerable amount of memory [8 -12]. 

 In order to enhance the voltage stability profile 
through out the whole power network, simulated annealing 
(SA) optimization technique [13-14] is applied to control 
the power elements of major influence on the voltage 
stability profile. Elements such as generator reactive 
generation, adjustable shunt compensation devices, 
transformer tap settings are optimally adjusted at each 
operating point to reach the objective of increasing the 
distance from an unstable system state and therefore to 
increase the maximum possible system safe loading. The 
objective is achieved through minimizing the highest value   
of the voltage stability indicator in the whole system and 
consequently all load buses indicators will follow.   

 
The present work proposes a Neural Network-Based 
method for an On-line prediction and estimation of steady 
state voltage stability limit, which is represented in the 



 

 

form of maximum loadabiltiy while the system, is 
operating under optimized voltage stability profile.  
As an attractive alternative to the Multilayer Perceptron 
(MLP) Neural Network, an (RBFNN) was designed for 
maximum loadability level prediction. The advantage of 
the proposed technique is its fast convergence, its adequate 
generalization characteristic, and its learning efficiency 
[15]. The input training information used is the resulting 
optimal voltage and angles for each load bus covering the 
whole power system. The output layer information is the 
maximum value of MVA loading factor before the system 
collapse.  
 
The constantly changing power network structure, power 
generation level and the different compensation element 
and control setting settings dictate a variable maximum 
loading level 
 The focus of this work is to develop a practical integrated 
system capable of on-line real-time estimation or 
prediction for the maximum loadability while the system is 
optimally running at a certain operating point. The 
objective remains the accuracy and fast performance of the 
developed network. 
 

 
2 FAST VOLTAGE STABILITY INDICATOR 

 
For voltage stability bus evaluation, an indicator L-index 
is used. The indicator value varies in the range between 0  
(the no load case) and 1 witch corresponds to voltage 
collapse. The indicator uses bus voltage and network 
information provided by the load flow program.  
 
For multi-node system 

 
I Vbus bus bus= ×Υ      (1) 
 
By segregating the load buses (PQ) from generator 

buses (PV), equation (1) can write as 
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VL, IL: Voltages and Currents for PQ buses 
VG, IG: Voltages and Currents for PV buses 

Where, H1, H2, H3, H4: submatrices generated from Ybus 
partial inversion.  
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nG: number of generators 
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Lk: L-index voltage stability indicator for bus k [16,17] 

         
  Stability requires that Lk< 1 and must not be violated 

on a continuous basis. Hence a global system indicator L 
describing the stability of the complete system is L=Lmax 
{Lk}, where in {Lk} all L bus indexes are listed. 

In practice Lmax must be lower than a threshold value. 
The predetermined threshold value is specified at the 
planning stage depending on the system configuration and 
on the utility policy regarding the quality of service and 
the level of system decided allowable margin. In practice, 
the calculation of the complex vector Vok never uses the 
inversion of Y1. 
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Instead sparse factorization vector methods have been 

used to solve the linear system (7) and make from L-index 
a potential candidate for  real-time performance. 

 
3 SIMULATED ANNEALING TECHNIQUE 

 
3.1 Overview 

 
Simulated annealing is an optimization technique that 

simulates the physical annealing process in the field of 
combinatorial optimization. Annealing is the physical 
process of heating up a solid until it melts, followed by 
slow cooling it down by decreasing the temperature of the 
environment in steps. At each step, the temperature is 
maintained constant for a period of time sufficient for the 
solid to reach thermal equilibrium.  

Metropolis et al [13] proposed a Monte Carlo method 
to simulate the process of reaching thermal equilibrium at a 
fixed value of the temperature T. In this method, a 
randomly generated perturbation of the current 
configuration of the solid is applied so that a trial 
configuration is obtained. This trial configuration is 
accepted and becomes the current configuration if it 
satisfies an acceptance criterion. The process continues 
until the thermal equilibrium is achieved after a large 
number of perturbations. By gradually decreasing the 
temperature T and repeating Metropolis simulation, new 
lower energy levels become achievable. As T approaches 
zero least energy configurations will have a positive 
probability of occurring. 

 
3.2 SA Algorithm 

 
At first, the analogy between a physical annealing 

process and a combinatorial optimization problem is based 
on the following [14]: 
• Solutions in an optimization problem are equivalent to 

configurations of a physical system. 
• The cost of a solution is equivalent to the energy of a 

configuration. 



 

 

In addition, a control parameter Cp is introduced to play the 
role of the temperature T. 

The basic elements of SA are defined as follows: - 
• Current, trial, and best solutions, xcurrent, xtrial, and 

xbest: these solutions are sets of the optimized 
parameter values at any iteration. 

• Acceptance criterion: at any iteration, the trial 
solution can be accepted as the current solution if it 
meets one of the following critera; (a) J(xtrial) < 
J(xcurrent); (b) J(xtrial) > J(xcurrent) and exp(-(J(xtrial)-
J(xcurrent))/ Cp) ≥ rand(0,1). Here, rand(0,1) is a 
random number with domain [0,1] and J(xtrial)and 
J(xcurrent) are the objective function values associated 
with xtrial and xcurrent respectively. Criterion (b) 
indicates that the trial solution is not necessarily 
rejected if its objective function is not as good as that 
of the current solution with hoping that a much better 
solution become reachable. 

• Acceptance ratio: at a given value of Cp, an n1 trial 
solutions can be randomly generated. Based on the 
acceptance criterion, an n2 of these solutions can be 
accepted. The acceptance ratio is defined as n2/n1. 

• Cooling schedule: it specifies a set of parameters that 
governs the convergence of the algorithm. This set 
includes an initial value of control parameter Cp0, a 
decrement function for decreasing the value of Cp, and 
a finite number of iterations or transitions at each 
value of Cp, i.e. the length of each homogeneous 
Markov chain. The initial value of Cp should be large 
enough to allow virtually all transitions to be accepted. 
However, this can be achieved by starting off at a 
small value of Cp0 and multiplying it with a constant 
larger than 1, α, i.e. Cp0=αCp0. This process continues 
until the acceptance ratio is close to 1. This is 
equivalent to heating up process in physical systems. 
The decrement function  for decreasing the value of Cp 
is given by Cp=µ Cp where µ is a constant smaller than 
but close to 1. Typical values lie between 0.8 and 0.99 
[14]. 

• Equilibrium condition: it occurs when the current 
solution does not change for a certain number of 
iterations at a given value of Cp. It can be achieved by 
generating a large number of transitions at that value 
of Cp.  

• Stopping Criteria: these are the conditions under 
which the search process will terminate. In this study, 
the search will terminate if one of the following 
criteria is satisfied: (a) the number of Markov chains 
since the last change of the best solution is greater 
than a prespecified number; or, (b) the number of 
Markov chains reaches the maximum allowable 
number. 

 
4 RADIAL BASIS FUNCTIONS NEURAL 

NETWORKS 
 
Radial basis functions neural networks (RBFNN) have 
been developed based on the theory of RBF 
approximation for real multivariable function 
approximation [18]. The use of RBFNN in engineering 
applications is increasing rabidly. RBFNN provide a 

powerful tool for constructing nonlinear mappings form 
input-output data. Moreover, RBFNN has the advantage 
of easy and effective learning algorithm compared to 
other multilayer feedforward Neural Networks. The 
attractive feature of the RBFNN lies in the linear 
dependence in the parameters, which greatly simplifies 
the design and analysis of such networks.  A typical 
multi-input multi-output RBFNN is shown in Figure 1, 
which consists of three layers.  An input layer with n 
inputs, one hidden layer with m neurons, and an output 
layer with k output units. Each output unit in the RBFNN 
performs the following function 
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Where φj x( ) ’s are radially symmetric functions 
representing the nonlinearities in the hidden layer. 
The most commonly used function is the Gaussian 
function given by 
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The Gaussian function is defined by a center position 
$x j and a width σ j . The center of the basis function 

can be determined by simple heuristic approaches 
such as the k-means clustering method, and the width 
can be determined using nearest neighbor method 
[19,15]. The number of hidden units can be selected 
as the number of training patterns. This approach 
often leads to very large networks and poor 
generalization capabilities. Different approaches have 
been proposed for the selection of the number of 
hidden units [20,21]. The weights from hidden to 
output layers can be  
Computed using the least mean square (LMS) or 
pseudo inverse methods. 
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Figure 1: Radial Basis Function Neural Network 
 



 

 

 
5. SIMULATION RESULTS AND DISCUSSIONS 
 
The test is conducted on Ward and Hale Six bus power 
system [23]. The proposed Neural Network has 8 inputs 
representing the voltage and angle of each load bus in the 
system and one output corresponding to the maximum 
loadability factor. Only the optimized load bus voltages 
and their angles are considered at input layer. The  
Voltage stability indicator L-index corresponding to the 
slack bus and to the voltage-controlled bus are always 
zeros as long as long as the bus voltage remains controlled.  
The optimized inputs voltages and their corresponding 
angles values are based on minimizing the highest voltage 
stability index Lmax of the whole system. 
 
 The input out training sets were covering random line 
contingencies, random variation of voltage-controlled 
buses between 0.95 and 1.1 per unit as well as random real 
power generation. 
 
 
The training was performed using the solverb function in 
the MATLAB Neural Networks toolbox.  The estimation 
error of the maximum voltage stability loadability factor 
for the training data is shown in Figure 2. The obtained 
error for the whole range of training sets is found to vary 
between 0.0122 and –0.0156 witch corresponds to 0.66% 
to – 0.85% 
 
  To the generalization capabilities of the proposed Neural 
Network, an investigation was conducted by using 200 
patterns outside and from both left and right of the training 
range. The results obtained are shown in Figure 3.  
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Figure 2: Six-bus maximum loading Factor Estimation 

error for the testing data 
 

 
The percentage error for the testing case varies between 
0.74% to –2.09%  which shows and proves the ability of 
the proposed Neural Network to predict the loadability 
factor indices for new patterns with very good accuracy.  
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Figure  3: Six bus maximum loading Factor Estimation 

error for the testing data   
 
 

6. CONCLUSIONS 
 
This paper proposed a prototype Radial Basis Function 
Neural Network (RBFNN) developed for a practical 
integrated system capable of on-line real-time estimation 
or prediction for the maximum loadability while the 
system is optimally running at a certain operating point. 
The application conducted on the test system has 
demonstrated accuracy and efficiency. The designed  
(RBFNN) was able to follow a non-linearities introduced 
by line contingencies and changes in the power network 
random behavior. To learn the power system characteristic 
in conjunction with voltage stability optimal profile, the 
proposed network did not have to map the power system 
structure in order to reach the generalization capability. 
The fast performance of the network proves its strong 
candidacy for being an effective and essential part for an 
integrated On-line maximum loaddability prediction 
system.   
. 
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