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Power system stability enhancement via excitation and FACTS-based stabiliz-
ers is thoroughly investigated in this paper. This study presents a singular value
decomposition–based approach to assess and measure the controllability of the
poorly damped electromechanical modes by different control inputs. The design
problem of a power system stabilizer and different FACTS-based stabilizers is
formulated as an optimization problem. An eigenvalue-based objective function
to increase the system damping and improve the system response is developed.
Then, a real-coded genetic algorithm is employed to search for optimal con-
troller parameters. In addition, the damping characteristics of the proposed
schemes are also evaluated in terms of the damping torque coefficient with dif-
ferent loading conditions for better understanding of the coordination problem
requirements. The proposed stabilizers are tested on a weakly connected power
system with different loading conditions. The damping torque coefficient analy-
sis, nonlinear simulation results, and eigenvalue analysis show the effectiveness
and robustness of the proposed control schemes over a wide range of loading
conditions.

Keywords power system stability, FACTS devices, genetic algorithms

1. Introduction

Since the 1960s low-frequency oscillations have been observed when large power
systems are interconnected by relatively weak tie lines. These oscillations may sus-
tain and grow to cause system separation if no adequate damping is available [1, 2].

Although power system stabilizers (PSSs) provide supplementary feedback sta-
bilizing signals, they suffer a drawback of being liable to cause great variations
in the voltage profile, and they may even result in leading power factor operation
under severe disturbances. Recent advances in power electronics have led to the de-
velopment of flexible alternating current transmission systems (FACTS). Generally,
a potential motivation for the accelerated use of FACTS devices is the deregulation
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environment in contemporary utility business. Along with primary function of the
FACTS devices, the real power flow can be regulated to mitigate the low-frequency
oscillations and enhance power system stability. This suggests that FACTS will find
new applications as electric utilities merge and as the sale of bulk power between
distant and ill-interconnected partners become more widespread.

Recently, several FACTS devices have been implemented and installed in prac-
tical power systems such as the static VAR compensator (SVC) [3–4], thyristor-
controlled series capacitor (TCSC) [5–6], and thyristor-controlled phase shifter
(TCPS) [7–8]. In the literature a little work has been done on the coordination
problem investigation of excitation and FACTS-based stabilizers. Mahran et al.
[9] presented a coordinated PSS and SVC control for a synchronous generator.
However, the proposed approach uses recursive least squares identification, which
reduces its effectiveness for online applications. Rahim and Nassimi [10] presented
optimum feedback strategies for both SVC and exciter controls. However, the pro-
posed controller requires some or all states to be measurable or estimated. Moreover,
it leads to a centralized controller for multimachine power systems, which reduces
its applicability and reliability. Noorozian and Anderson [11] presented a compre-
hensive analysis of damping of power system electromechanical oscillations using
TCSC, TCPS, and SVC, where the impact of transmission line loading and load
characteristics on the damping effect of these devices have been discussed. Hiyama
et al. [12] presented a coordinated fuzzy logic–based scheme for PSS and switched
series capacitor modules to enhance overall power system stability. The results were
promising in the sense that the power system stability region can be greatly ex-
tended. Wang and Swift [13] have discussed the damping torque contributed by
SVC, TCSC, and TCPS where several important points have been analyzed and
confirmed through simulations. However, all controllers were assumed proportional,
and no efforts have been done toward the controller design. On the other hand, it
is necessary to measure the electromechanical mode controllability to assess the
effectiveness of different controllers and form a clear idea about the coordination
problem requirements.

In this study excitation and FACTS-based stabilizers are considered to enhance
the damping of low-frequency modes. A controllability measure based on singular
value decomposition (SVD) is introduced in this work to identify the most effective
stabilizer. The stabilizer design problem is transformed into an optimization prob-
lem where the real-coded genetic algorithm (RCGA) will be applied to search for
the optimal parameter settings. The effectiveness of the proposed stabilizers in en-
hancing the power system transient stability over a wide range of loading condition
is examined. In addition, the damping torque coefficient is evaluated with the pro-
posed stabilizers for better understanding of coordination problem requirements.
For completeness, the eigenvalue analysis and nonlinear simulation results are car-
ried out to demonstrate the effectiveness of the proposed stabilizers to enhance
system damping.

2. Power System Model

2.1. Generator

In this study a single machine infinite bus system as shown in Figure 1 is considered.
The generator is equipped with a PSS, and the system has TCSC, TCPS, and SVC
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Figure 1. Single machine infinite bus system.

as shown in Figure 1. The line impedance is Z = R + jX, and the generator has
a local load of admittance YL = g + jb. The generator is represented by the third-
order model comprising of the electromechanical swing equation and the generator
internal voltage equation [1, 2]. The swing equation is divided into the following
equations:

ρδ = ωb(ω − 1), (1)

ρω =
Pm − Pe − D(ω − 1)

M
, (2)

where, Pm and Pe are the input and output powers of the generator, respectively;
M and D are the inertia constant and damping coefficient, respectively; δ and ω are
the rotor angle and speed, respectively; and ρ is the derivative operator d/dt. The
output power of the generator can be expressed in terms of the d-axis and q-axis
components of the armature current, i, and terminal voltage, v, as

Pe = vdid + vqiq. (3)

The internal voltage, E′
q, equation is

ρE′
q =

Efd − (xd − x′
d)id − E′

q

T ′
do

. (4)

Here Efd is the field voltage; T ′
do is the open circuit field time constant; and xd and

x′
d are d-axis reactance and d-axis transient reactance of the generator, respectively.

2.2. Exciter and PSS

The IEEE type-ST1 excitation system shown in Figure 2 is considered. It can be
described as

ρEfd =
KA(Vref − v + uPSS) − Efd

TA
(5)

where, KA and TA are the gain and time constant of the excitation system,
respectively; and Vref is the reference voltage. As shown in Figure 2, a conventional
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Figure 2. IEEE type-ST1 excitation system with PSS.

lead-lag PSS is installed in the feedback loop to generate a stabilizing signal uPSS .
In equation (5), the terminal voltage v can be expressed as

v = (v2d + v2q )
1/2, (6)

vd = xqiq, (7)

vq = E′
q − x′

did, (8)

where xq is the q-axis reactance of the generator.

2.3. FACTS-Based Stabilizers

Figure 3 illustrates the block diagram of an SVC with a lead-lag compensator. The
susceptance of the SVC, BSV C , can be expressed as

ρBSV C =
Ks(Bref − uSV C) − BSV C

TS
, (9)

Figure 3. SVC with lead-lag controller.
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where Bref is the reference susceptance of SVC; and Ks and Ts are the gain and
time constant of the SVC. As shown in Figure 3, a conventional lead-lag controller
is installed in the feedback loop to generate the SVC stabilizing signal uSV C . The
same controller structure used in Figure 3 is applied for TCSC and TCPS by
replacing SVC susceptance BSV C by TCSC reactance XTCSC and TCPS angle
ΦTCPS , respectively. Similar expressions for XTCSC and ΦTCPS can be expressed
as follows

ρXTCSC =
Ks(Xref − uTCSC) − XTCSC

Ts
, (10)

ρΦTCPS =
Ks(Φref − uTCPS) − ΦTCPS

Ts
. (11)

2.4. Linearized Model

In the design of electromechanical mode damping controllers, the linearized incre-
mental model around a nominal operating point is usually employed [1–2]. Lineariz-
ing the expressions of id and iq and substituting into the linear form of equations
(1)–(11) yield the following linearized power system model:




ρ∆δ
ρ∆ω
ρ∆E′

q

ρ∆Efd


 =




0 377 0 0

−K1
M

− D

M
−K2
M

0

−K4
T ′

do

0 −K3
T ′

do

1
T ′

do

−KAK5
TA

0 −KAK6
TA

− 1
TA
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∆E′
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M
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−KqX
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uPSS

∆BSV C

∆XTCSC

∆ΦTCPS


 .

(12)

In short,

ρX = AX +HU. (13)

Here, the state vector X is [∆δ,∆ω,∆E′
q,∆Efd]T , and the control vector U is

[uPSS ,∆BSV C ,∆XTCSC ,∆ΦTCPS ]T . The block diagram of the linearized power
system model is depicted as shown in Figure 4 where K1–K6, Kp, Kq, and Kv are
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Figure 4. Block diagram of the linearized model.

linearization constants defined as

K1 =
∂Pe

∂δ
, K2 =

∂Pe

∂E′
q

, Kp =
∂Pe

∂F
,

K4 =
∂Eq

∂δ
, K3 =

∂Eq

∂E′
q

, Kq =
∂Eq

∂F
,

K5 =
∂v

∂δ
, K6 =

∂v

∂E′
q

, Kv =
∂v

∂F
,

(14)

where F is BSV C , XTCSC , or ΦTCPS .

3. The Proposed Approach

3.1. Electromechanical Mode Identification

The state equations of the linearized model given in equation (13) can be used
to determine the eigenvalues of the system matrix A. Out of these eigenvalues,
there is a mode of oscillations related to machine inertia. For the stabilizers to be
effective, it is extremely important to identify the eigenvalue associated with the
electromechanical mode. In this study the participation factors method [14] is used.

3.2. Controllability Measure

To measure the controllability of the electromechanical mode by a given input, the
singular value decomposition (SVD) is employed in this study. Mathematically, if
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G is an m × n complex matrix, then there exist unitary matrices W and V with
dimensions of m × m and n × n respectively such that G can be written as

G = W
∑

V H , (15)

where

∑
=




∑
1

0

0 0


 ,

∑
1

= diag(σ1, . . . , σr)

with σ1 ≥ · · · ≥ σr ≥ 0

, (16)

where r = min{m,n} and σ1, . . . , σr are the singular values of G.
The minimum singular value σr represents the distance of the matrix G from

the all matrices with a rank of r−1. This property can be utilized to quantify modal
controllability [15]. In this study the matrix H in equation (13) can be written as
H = [h1, h2, h3, h4], where hi is the column of matrix H corresponding to the ith
input. The minimum singular value of the matrix [λI−Ahi] indicates the capability
of the ith input to control the mode associated with the eigenvalue λ. As a matter
of fact, the higher the minimum singular value, the higher the controllability of
this mode by the input considered. Having been identified, the controllability of
the electromechanical mode can be examined with all inputs to identify the most
effective one to control that mode.

3.3. Stabilizer Design

A widely used conventional lead-lag structure for both excitation and FACTS-based
stabilizers, shown in Figures 2 and 3, is considered. In this structure the washout
time constant Tw and the time constants T2 and T4 are usually prespecified. The
controller gain K and time constants T1 and T3 are to be determined. In this study
the input signal of all proposed controllers is the speed deviation ∆ω.

In the stabilizer design process, it is aimed to maximize the damping ratio of
the poorly damped electromechanical mode eigenvalues. Therefore, the following
eigenvalue-based objective function J is used:

J = min{ζ : ζ ∈ ζs of electromechanical modes}, (17)

where ζ is the damping ratio of the electromechanical mode eigenvalue. In the
optimization process, it is aimed to Maximize J while satisfying the problem con-
straints that are the optimized parameter bounds. Therefore, the design problem
can be formulated as the following optimization problem.

Maximize J

Subject to (18)

Kmin ≤ K ≤ Kmax, (19)

Tmin1 ≤ T1 ≤ Tmax1 , (20)

Tmin3 ≤ T3 ≤ Tmax3 . (21)

The proposed approach employs RCGA to solve this optimization problem and
search for an optimal or near optimal set of the optimized parameters.
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3.4. Damping Torque Coefficient Calculation

To assess the effectiveness of the proposed stabilizers, the damping torque coefficient
is evaluated and analyzed. The torque can be decomposed into synchronizing and
damping components as follows:

∆Te(t) = Ksyn∆δ(t) +Kd∆ω(t), (22)

where Ksyn and Kd are the synchronizing and damping torque coefficients, respec-
tively. It is worth mentioning thatKd is a damping measure to the electromechanical
mode of oscillations [16].

To calculate Ksyn and Kd, the error between the actual torque deviation and
that obtained by summing both components can be defined as

E(t) = ∆Te(t) − (Ksyn∆δ(t) +Kd∆ω(t)). (23)

Then Ksyn and Kd are computed to minimize the sum of the squared errors over
the simulation period tsim as

N∑
[E]2 =

N∑
[∆Te − (Ksyn∆δ +Kd∆ω)]2, (24)

where tsim = N × Tsamp, Tsamp is the sampling period. Thus, these coefficients
should satisfy

∂

∂Ksyn

N∑
[E]2 = 0 and

∂

∂Kd

N∑
[E]2 = 0, (25)

which yields

N∑
∆Te∆δ = Ksyn

N∑
[∆δ]2 +Kd

N∑
[∆ω.∆δ], (26)

N∑
∆Te∆ω = Kd

N∑
[∆ω]2 +Ksyn

N∑
[∆ω.∆δ]. (27)

Solving equations (26) and (27), Ksyn and Kd can be calculated.

4. Implementation

4.1. Real-Coded Genetic Algorithm

Due to difficulties of binary representation when dealing with continuous search
space with a large dimension, the proposed approach has been implemented using
a real-coded genetic algorithm (RCGA) [17]. A decision variable xi is represented
by a real number within its lower limit ai and upper limit bi: xi ∈ [ai, bi]. The
RCGA crossover and mutation operators are described as follows.

Crossover: A blend crossover operator (BLX-α) has been employed in this
study. This operator starts by choosing randomly a number from the interval
[xi − α(yi − xi), yi + α(yi − xi)], where xi and yi are the ith parameter values
of the parent solutions and xi < yi. To ensure the balance between exploitation
and exploration of the search space, α = 0.5 is selected. This operator is depicted
in Figure 5.
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Figure 5. Blend crossover operator (BLX-α).

Mutation: The nonuniform mutation operator has been employed in this study.
In this operator the new value x′

i of the parameter xi after mutation at generation
t is given as

x′
i =



xi +∆(t, bi − xi) if τ = 0

xi − ∆(t, xi − ai) if τ = 1
, (28)

∆(t, y) = y(1 − r(1−
t

gmax )
β

), (29)

where τ is a binary random number, r is a random number r ∈ [0, 1], gmax is the
maximum number of generations, and β is a positive constant chosen arbitrarily.
In this study β = 5 was selected. This operator gives a value x′

i ∈ [ai, bi] such that
the probability of returning a value close to xi increases as the algorithm advances.
This makes uniform search in the initial stages where t is small and very locally at
the later stages.

4.2. RCGA Application

RCGA has been applied to search for optimal settings of the optimized parameters
of the proposed control schemes. In our implementation the crossover and mutation
probabilities of 0.9 and 0.01, respectively, are found to be quite satisfactory. The
number of individuals in each generation is selected to be 100. In addition, the search
will terminate if the best solution does not change for more than 50 generations
or the number of generations reaches 500. The computational flow chart of the
proposed design approach is shown in Figure 6.

5. Results and Discussions

5.1. Settings of the Proposed Stabilizers

The proposed approach has been implemented on a weakly connected power system.
The detailed data of the power system used in this study is given in the Appendix.
The convergence rate of the objective function J with the number of generations is
shown in Figure 7 for all proposed stabilizers. The stabilizer parameters have been
optimized to improve the damping ratio of the electromechanical mode eigenvalue.
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Figure 6. Flow chart of the proposed design approach.

The final settings of the optimized parameters for the proposed stabilizers are
given in Table 1. The system eigenvalues without and with the proposed stabilizers
are given in Table 2, where the first row represents the electromechanical mode
eigenvalues. It is clear that the electromechanical mode is unstable without control
while the system stability is greatly enhanced with the proposed stabilizers.

Figure 7. Objective function convergence.
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Table 1
Optimal parameter settings of the proposed stabilizers

PSS SVC TCSC TCPS

K 17.896 98.647 99.848 99.760
T1 0.2770 0.9587 0.0596 0.0720
T2 0.1000 0.3000 0.1000 0.1000
T3 — 0.0114 — —
T4 — 0.3000 — —

5.2. Electromechanical Mode Controllability Measure

With each input signal given in equation (13), the minimum singular value σmin
has been estimated to measure the controllability of the electromechanical mode
from that input. Figure 8 shows σmin with loading conditions over the range of
Pe = [0.05 − 1.4] pu and Q ∈ {−0.4, 0.4} pu. It can be seen that

1. The mode controllability is almost the same in case of PSS and SVC.
2. The mode is more controllable with TCSC and TCPS compared to PSS and

SVC.
3. The mode controllability by TCSC changes almost linearly with the system

loading.
4. The mode is most controllable by TCPS and TCSC at light loading and

heavy loading, respectively.
5. As Q increases, the mode controllability via TCSC becomes dominant at

lower loading levels.

5.3. Damping Torque Coefficient

To evaluate the effectiveness of the proposed stabilizers, the damping torque coeffi-
cient has been estimated with each stabilizer. Figure 9 shows Kd versus the loading
variations. It can be concluded that

1. The damping of the TCPS is almost independent of loading variations.
2. The damping of the TCSC increases linearly with Pe.
3. The SVC provides negative damping at low loading conditions. This becomes

more evident with positive Q as shown in Figure 9(c). This confirms the
finding presented in [13].

Table 2
System eigenvalues without and with the proposed stabilizers

No control PSS SVC TCSC TCPS

+0.30 ± j4.96 −2.71 ± j5.06∗ −2.33 ± j4.69∗ −3.28 ± j3.96∗ −3.05 ± j3.56∗

−10.39 ± j3.29 −3.23 ± j6.09 −2.47 ± j4.98 −6.04 ± j7.28 −7.08 ± j8.28
— −18.31 −20.43 −19.20 −18.03
— −0.204 −14.21 −12.36 −11.89
— — −2.64 −0.21 −0.21
— — −0.20 — —
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Figure 8. Minimum singular value with loading variations: (a) Q = −0.4 pu, (b) Q =
0.0 pu, (c) Q = 0.4 pu.
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Figure 9. Damping coefficient with the loading variations: (a) Q = −0.4 pu, (b) Q =
0.0 pu, (c) Q = 0.4 pu.
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4. It is also observed that TCSC provides negative damping at very low loading
levels with leading power factor as shown in Figure 9(a).

5. PSS outperforms the SVC at low loading levels. It also outperforms the
TCSC at low loading levels with leading power factor.

5.4. Nonlinear Simulation Results

For completeness and verification, all the proposed stabilizers were tested under
different disturbances and loading conditions. Figure 10 shows the system response

Figure 10. System response for six-cycle fault with nominal loading (P = 1.0 pu,
Q = 0.015 pu): (a) rotor angle response, (b) terminal voltage response.
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with six-cycle fault disturbance at the nominal loading condition. It can be seen
that the TCPS and TCSC provide the best damping characteristics and enhance
greatly the first swing stability. This is found to be consistent with the damping
torque coefficient results shown in Figure 9(b). On the other hand, the terminal
voltage has great variations with the PSS. The results with a three-cycle fault
disturbance at a heavy loading condition are shown in Figure 11. It is clear that the
TCSC provides the greatest damping characteristics at this loading. This confirms
the findings of Figure 9(c).

Figure 11. System response for three-cycle fault with heavy loading (P = 1.1 pu,
Q = 0.4 pu): (a) rotor angle response, (b) terminal voltage response.
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6. Conclusion

In this study the power system stability enhancement via PSS and FACTS-based
stabilizers is presented and discussed. For the proposed stabilizer design problem, an
eigenvalue-based objective function to increase the system damping was developed.
Then the real-coded genetic algorithm was implemented to search for the optimal
stabilizer parameters. In addition, a controllability measure for the poorly damped
electromechanical modes using a singular value decomposition approach is proposed
to assess the effectiveness of the proposed stabilizers. The damping characteristics of
the proposed schemes were also evaluated in terms of the damping torque coefficient.
The proposed stabilizers have been tested on a weakly connected power system
with different loading conditions. The eigenvalue analysis and nonlinear simulation
results show the effectiveness and robustness of the proposed stabilizers to enhance
the system stability.
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Appendix

The system data are as follows:

M = 9.26 s T ′
do = 7.76 D = 0.0 xd = 0.973

x′
d = 0.19 xq = 0.55 R = −0.034 X = 0.997

g = 0.249 b = 0.262 KA = 50 TA = 0.05
Ks = 1.0 Ts = 0.05 |uPSS | ≤ 0.2 pu |BSV C | = 0.4 pu
|XTCSC | = 0.5X |ΦTCSP | = 15◦ |Efd| ≤ 7.3 pu v = 1.05 pu.

All resistances and reactances are in pu, and time constants are in seconds.


