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Environmental/Economic Power Dispatch Using
Multiobjective Evolutionary Algorithms

M. A. Abido, Member, IEEE

Abstract—This paper presents a new multiobjective evolu- option is an attractive short-term alternative in which both
tionary algorithm for Environmental/Economic power Dispatch  emission and fuel cost is to be minimized. In recent years, this
(EED) problem. The EED problem is formulated as a nonlinear option has received much attention [4][8] since it requires

constrained multiobjective optimization problem. A new Strength | I dificati f the basi ic dispatch t
Pareto Evolutionary Algorithm (SPEA) based approach is pro- oniy" smail moaiication o € DasiC economic “diSpaici to

posed to handle the EED as a true multiobjective optimization include emissions.

problem with competing and noncommensurable objectives. The  Different techniques have been reported in the literature per-
proposed approach employs a diversity-preserving mechanism to taining to environmental/economic dispatch (EED) problem. In
overcome the premature convergence and search bias problems.[4] the problem has been reduced to a single objective problem

A hierarchical clustering algorithm is also imposed to provide the by treating th . traint with issible limit
decision maker with a representative and manageable Pareto-op- ytreating the emission as a constraint with a PErmissibie fimit.

timal set. Moreover, fuzzy set theory is employed to extract the best This formulation, however, has a severe difficulty in getting
compromise nondominated solution. Several optimization runs of the trade-off relations between cost and emission. Alternatively,
the proposed approach have been carried out on a standard test minimizing the emission has been handled as another objective
system. The results demonstrate the capabilities of the proposed i, 5qdition to usual cost objective. A linear programming based

approach to generate well-distributed Pareto-optimal solutions o - - S -
of the multiobjective EED problem in one single run. The com- optimization procedures in which the objectives are considered

parison with the classical techniques demonstrates the superiority ONe at a time was presented in [5]. Unfortunately, the EED
of the proposed approach and confirms its potential to solve the problem is a highly nonlinear optimization problem. Therefore,

multiobjective EED problem. In addition, the extension of the conventional optimization methods that make use of derivatives
proposed approach to include more objectives is a straightforward 5,4 gradients, in general, are not able to locate or identify the
process. global optimum. On the other hand, many mathematical as-
~ Index Terms—Environmental/economic power dispatch, evolu- sumptions such as analytic and differential objective functions
tionary algorlthmg, multiobjective optimization, strength pareto have to be given to simplify the problem. Furthermore, this ap-
evolutionary algorithm. . . . . !
proach does not give any information regarding the trade-offs
involved.
|. INTRODUCTION In other research direction, the EED problem was converted

HE basic objective of economic dispatch (ED) of electril® @ single objective problem by linear combination of different

power generation is to schedule the committed generatig‘?‘e?t'ves.as a weighted sum [6], [7]. The |mport.ant gspect
unit outputs so as to meet the load demand at minimum operat gﬁh's we|ghted sum.method is that a ?et of nonmfe_rlor (or
cost while satisfying all unit and system equality and inequali{D .eto—optlmal) solutlons_can b_e Obtam?d by varying the
constraints. In addition, the increasing public awareness of t%glghts. Unfortunately, this requires multiple runs as many
environmental protection and the passage of the Clean %rlnes as the F‘“mber of desired Pareto-(_)ptlmal soluthns.
Act Amendments of 1990 have forced the utilities to modi urth.ermo.re, this method ca}nnot be used to find Pareto—opymal
their design or operational strategies to reduce pollution a%aluuons in problc_ems. havmg a non-convex Pareto-optimal
atmospheric emissions of the thermal power plants. ront'. T.O §v0|d thIS.dlffICUHy, thea—constralr_n method for_
Several strategies to reduce the atmospheric emissions h%tlobje_ctlve opt|m|zat|qn was presented in [8], [9]. .Th'.s

been proposed and discussed [1]-[3]. These include installatmﬁthoOI IS ba_sed on opt|m|zm_g the most preferr_ed objective
of pollutant cleaning equipment, switching to low emission fuel ,nd considering the other abjeciives as consiraints bounded

replacement of the aged fuel-burners with cleaner ones, some allowable levels. These levels are then altered

emission dispatching. The first three options require installatié?m generate rt1h§ e;mre Pareto-lopumaclj stet. dlt Its c;b\gous tL\Iat
of new equipment and/or modification of the existing one IS approach Is ime-consuming and tends to find weakly

that involve considerable capital outlay and, hence, they 3 ndominated solutions.

be considered as long-term options. The emission dispatchin he recent d|rect|o_n IS tq ha_mdle both ObJeCt'V?S _5|rn_u|-
taneously as competing objectives. A fuzzy multiobjective

optimization technique for the EED problem was proposed
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presented in [11]. However, some of nondominated solutionstput of theith generatorP is the vector of real power outputs
may be lost during the search process while some of dominatddyenerators and defined as

solutions may be misclassified as nondominated ones due to

the selection process adopted. A fuzzy satisfaction-maximizing P = [Pg,, P, -, Pay]" (2)

decision approach was successfully applied to solve the EEDl\/linimization of EmissionThe atmospheric pollutants such

problem [12]. However, extension of the approach to mcludaeS sulpher oxide$O, and nitrogen oxideNO, caused by

more objectives is a very involved question. A multiobjectiwfa . .
stochastic search technique for solvina the broblem w osssn-fueled thermal units can be modeled separately. However,
resented in [13] Howevgr the techni uge is cor[?n utationall f comparison purposes, the totah/h emission E(F’g) of
P o . 1a P NaANese pollutants can be expressed as [5], [8], [13]
involved and time-consuming. In addition, the search bias 1o
some regions may result in premature convergence, which N
degrades the Pareto-optimal front. E(Pg) = 107*(ci+BiPe,+%P&,)+ (i exp(AiPa,) (3)
Over the past few years, the studies on evolutionary algo- i=1
r|thrr_1$ .have shown that thefse methods can be efficiently US&ﬁF’ereai, Biy vir G;, and)\; are coefficients of théth generator
tq eliminate most of the_ difficulties of clgssmal methods [14kmission characteristics.
Since they are population-based techniques, multiple Pareto-
optimal solutions can, in principle, be found in one single ruB, Objective Constraints
A genetic algorithm-based multiobjective technique was pre- . . . .
X . : . Generation capacity constrainfor stable operation, real
sented in [15] where multiple nondominated solutions can be ) .
) : . wer output of each generator is restricted by lower and upper
obtained in a single run. However, the problem has been con£8 ) .
L o . . imits as follows:
erably simplified. In addition, the presented technique is com-
putationally involved due to ranking process during the fitness PEn < P < P> i=1,...,N 4)
assignment procedure. oo T
In this paper, a new Strength Pareto Evolutionary algorithm Power balance constrainthe total power generation must
(SPEA) based approach is proposed for solving the multiobever the total demangt;, and the real power loss in transmis-
jective EED optimization problem. The diversity-preservingion linesP,,s. Hence,
mechanism embedded in the search algorithm makes it effec- N
tive in e_xplorlng the pr(_)blem space and ca_pable pf finding ZPGq- — Pp—Pye =0 (5)
widely different nondominated solutions. A hierarchical clus-
tering technique is implemented to provide the system operator . . ) o
with a representative and manageable Pareto-optimal set. IP€CUrity constraintsfor secure operation, the transmission
addition, a fuzzy-based mechanism is employed to extract tH 10adings; is restricted by its upper limit as:
best compromise solution. Several runs are carried out on the g < gmax i nl ©)
standard IEEE test system and the results are compared to b=PL 0 2= 5
the classical techniques. The effectiveness and potential of {iereni is the number of transmission lines.
proposed approach to solve the multiobjective EED problem

are demonstrated. C. Problem Formulation

=1

Aggregating the objectives and constraints, the problem can
IIl. PROBLEM STATEMENT be mathematically formulated as a nonlinear constrained multi-

The environmental/economic power dispatch problem is @bjective optimization problem as follows.
minimize two competing objective functions, fuel cost and

emission, while satisfying several equality and inequality Min}iglize [F(Pa), E(Pa)] (7)
constraints. Generally the problem is formulated as follows. subject to: g(Pg) =0 (8)
h(Pg) <0 9

A. Problem Objectives

Minimization of Fuel CostThe generators cost curves aravhereg andh are the problem constraints.
represented by quadratic functions with sine components. The
superimposed sine components represent the rippling effects Ill. PRINCIPLE OF MULTIOBJECTIVE OPTIMIZATION
produced by the steam admission valve openings [16]. The tota

l\/lan real-world problems involve simultaneous optimiza-
$/h fuel costF'(Pg) can be expressed as y P b

tion of several objective functions. Generally, these functions

N are noncommensurable and often competing and conflicting ob-
F(Pg) = Z a; + b;Pg, + CiPG%?. jectives. Multiobjective optimization with such conflicting ob-
i=1 jective functions gives rise to a set of optimal solutions, instead
+1d; sin[ei(ngi“ _ PGJH (1) of one optimal solution. The reason for the optimality of many

solutions is that no one can be considered to be better than any
whereN is the number of generatois, b;, ¢;, d;, ande; are the other with respect to all objective functions. These optimal so-
cost coefficients of théth generator, an®; is the real power lutions are known aPareto-optimalsolutions.
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A general multiobjective optimization problem consists of a

number of objectives to be optimized simultaneously and is as-

sociated with a number of equality and inequality constraints. It *

can be formulated as follows:

Minimize fi(z) i=1,..., Nobj (10)
. ) gi(x)=0 j=1,....M
Subject to : { he() <0 k=1,... K (12)

wheref; is theith objective functionsy is a decision vector that
represents a solutioiV,,; is the number of objectives.

For a multiobjective optimization problem, any two solutions
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The strength of an individual is proportional to the number
of individuals covered by it.

Fitness of population individualsthe fitness of each in-
dividual in the population is the sum of the strengths of all
external Pareto optimal solutions by which it is covered.
Itis worth mentioning that, unlike the technique presented
in [15], the fithess of a population member is determined
only from the individuals stored in the external set. This
reduces significantly the computational burden of the fit-
ness assignment process. It is worth mentioning that the
strength of a Pareto optimal solution is at the same time
its fitness.

z! andz? can have one of two possibilities: one dominates or Generally, the algorithm can be described in the following
covers the other or none dominates the other. In a minimizZHepPs-
tion problem, without loss of generality, a solutioh covers or

dominates:? if the following two conditions are satisfied:

12)
(13)

1.V E{l, 2,00, Nobj} : fi(xl) < fi(xQ)
2. 3] 6{1727 .. -7Nobj} : fj(ll) < fj(xz)

If any of the above conditions is violated, the solutioh

does not dominate the solutiof. If ! dominates the solution

11)2,

z! is called the nondominated solution. The solutions that
are nondominated within the entire search space are denoted as

Pareto-optimaknd constitute thPareto-optimal sefThis set is
also known a®areto-optimal front

IV. PROPOSEDAPPROACH

A. Overview

Recently, the studies on evolutionary algorithms have shown

that these algorithms can be efficiently used to eliminate most of
the difficulties of classical methods which can be summarized

as:

An algorithm has to be applied many times to find multiple Step 3) (Fitness assignment):

Pareto-optimal solutions.
Most algorithms demand some knowledge about the
problem being solved.

Some algorithms are sensitive to the shape of the Pareto-

optimal front.
The spread of Pareto-optimal solutions depends on effi-
ciency of the single objective optimizer.

In general, the goal of a multiobjective optimization algo-

rithm is not only to guide the search toward the Pareto-optimal
front but also to maintain population diversity in the set of the
nondominated solutions. Unfortunately, a simple genetic algo-
rithm (GA) tends to converge toward a single solution due to
selection pressure and operator disruption [17].

B. Strength Pareto Evolutionary Algorithm (SPEA)[18]

The basic elements of the SPEA technique are briefly stated
and defined as follows:

» External setlt is a set of Pareto optimal solutions. These

solutions are stored externally and updated continuously.

Ultimately, the solutions stored in this set represent the Step 4)

Pareto optimal front.

» Strength of a Pareto optimal solutioit is an assigned

real values € [0, 1) for each individual in the external set.

Step 1)

Step 2)

(Initialization) : Generate an
initial population and create the
empty external Pareto-optimal set.

(External set updating):
ternal Pareto-optimal set is up-
dated as follows.

a) Search the population for
the nondominated individuals
and copy them to the external
Pareto set.

b) Search the external Pareto set
for the nondominated individ-
uals and remove all dominated
solutions from the set.

c) If the number of the individ-
uals externally stored in the
Pareto set exceeds a prespeci-
fied maximum size, reduce the
set by means of clustering.

Calculate
the fitness values of individuals

in both external Pareto set and

the population as follows.

a) Assign the strength s for
each individual in the ex-
ternal set. The strength is
proportional to the number of
individuals covered by that
individual.

b) The fitness of each individual
in the population is the sum
of the strengths of all ex-
ternal Pareto solutions which
dominate that individual.

A small positive number is
added to the resulting sum to
guarantee that Pareto solu-
tions are most likely to be
produced.

(Selection) : Combine the popu-
lation and the external set indi-
viduals. Select two individuals at
random and compare their fitness.

The ex-
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Step 5)

Step 6)

Select the better one and copy it
to the mating pool.

(Crossover and Mutation) . Per-
form the crossover and mutation
operations according to their
probabilities to generate the new
population.

(Termination) : Check for stop-
ping criteria. If any one is sat-
isfied then stop else copy new
population to old population and
go to Step 2. In this study, the
search will be stopped if the gen-
eration counter exceeds its max-
imum number.

C. Reducing Pareto Set by Clustering

In some problems, the Pareto optimal set can be extremely

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 18, NO. 4, NOVEMBER 2003

Step 6) Compute the reduced nondominated
set P* by uniting the representa-
tives of the clusters.

D. Best Compromise Solution

Upon having the Pareto-optimal set of nondominated solu-
tion, the proposed approach presents one solution to the deci-
sion maker as the best compromise solution. Due to imprecise
nature of the decision maker’s judgment, each objective func-
tion of thei-th solution is represented by a membership function
w; defined as [6]

1 Fz < Fimin
i = e PP SF, < FP . (15)
01 ‘ FL Z Fimax

For each nondominated solutiénthe normalized member-
ship functiony* is calculated as

large or even contain an infinite number of solutions. In this A%” .

case, reducing the set of nondominated solutions without de- o i=l ' (16)
stroying the characteristics of the trade-off front is desirable / M Nob; .

from the decision maker’s point of view. An average linkage kZ—:1 = H;

based hierarchical clustering algorithm [19] is employed to re-
duce the Pareto set to manageable size. It works iteratively 'y
joining the adjacent clusters until the required number of group8™MPromi
is obtained. It can be described as: given afsethich its size
exceeds the maximum allowable siig it is required to form

pereM is the number of nondominated solutions. The best
se solution is the one having the maximum/af

V. IMPLEMENTATION OF THE PROPOSEDAPPROACH

a subsef”* with the sizeN. The algorithm is illustrated in the A, Real-Coded Genetic Algorithm
following steps.

Step 1) Initialize cluster set

Step 2) If number of clusters

C; each
individual 1 € P constitutes a dis-
tinct cluster.

< N, then

go to Step 5, else go to Step 3.

Step 3) Calculate the distance of all

possible pairs of clusters. The

distance d. of two clusters c; and
co € C is given as the average dis-
tance between pairs of individuals
across the two clusters

1
dcz?’Ll'nQ Z

i1€c1, 12€c2

d(i1,1i9) (24)

where n; and n, are the numbers of
individuals in clusters c; and cs
respectively. The function d re-
flects the Euclidian distance in

the objective space between indi-
viduals 71 and 1.

Step 4) Determine two clusters with min-

imal distance d.. Combine these
clusters into a larger one. Go to
Step 2.

Step 5) For each cluster, find the cen-

troid and select the nearest in-
dividual to the centroid as a rep-
resentative and remove all other
individuals from the cluster.

Due to difficulties of binary representation when dealing with
continuous search space with large dimensions, the proposed
approach has been implemented using real-coded genetic algo-
rithm (RCGA) [20]. A decision variable; is represented by
a real number within its lower limit; and upper limit;, i.e.,

x; € [ai,b;]. The RCGA crossover and mutation operators are
described as follows:

CrossoverA blend crossover operator (BLX) has been em-
ployed in this study. This operator starts by choosing randomly
a number from the intervdk; — a(y; — ;), v + a(y; — z;)],
wherez; andy; are theith parameter values of the parent so-
lutions andz; < ;. In order to ensure the balance between
exploitation and exploration of the search space; 0.5 is se-
lected. This operator can be depicted as shown in Fig. 1.

Mutation The nonuniform mutation has been employed in
this study. In this operator, the new valieof the parameter;
after mutation at generation at timés given as

s JZi+A(t7bi—CL’i) ifr=0
Ti = {.’1}7 — A(t,ﬂ?i — ai) if T=1 (17)
and;
At,y) = y(1 — r=t/me)?) (18)

where 7 is a binary random number, is a random number

r € [0, 1], gmax IS the maximum number of generations, ghd

is a positive constant chosen arbitrarily. In this stygly; 5 was
selected. This operator gives a valtfee [a;, b;] such that the
probability of returning a value close iq increases as the algo-
rithm advances. This makes uniform search in the initial stages
wheret is small and very locally at the later stages.
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exploitation

—

a; x,. Vi b
| |
[

i

: |
Yi+a(y1_-x1)

e e . )
\__ exploration _/

Fig. 1. Blend crossover operator (BLX}.

| )
x,—o(y; = x;)

[ Current Population ] Pareto Set

Generation i

Y X XV S

Determination of
Nondominated Solutions

Extend Pareto Set ]

ize<Max.

Size No

\ 4
[Extend PopulationH Reduce Pareto Set by Clustering]

Fig. 3. Single-line diagram of IEEE 30-bus test system.

TABLE |
GENERATORFUEL COST AND EMISSION COEFFICIENTS
[ Crossover and Mutation}
i G, G2 G; Gy Gs Gs
. . a 10 10 20 10 20 10
+ P

Generation i+1 A 4 S b 200 150 180 100 180 150

( Next Population ] ( Updated Pareto Set ] c 100 120 40 60 40 100

a 4.091 2.543 4258 5.426 4,258 6.131
.§ B -5.554 -6.047 -5.094 -3.550 -5.094 -5.555

Fig. 2. Strength pareto evolutionary algorithm. 2 9 6.490 5.638 4.586 3.380 4.586 5.151
;§ 4 2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5
A 2.857 3.333 8.000 2.000 8.000 6.667

B. The Computational Flow

In this study, the basic SPEA has been developed in or(%r Settings of the Proposed Approach
to make it suitable for solving real-world nonlinear constrained The techniques used in this study were developed and im-
optimization problems. The following modifications have beeplemented on 133-MHz PC using FORTRAN language. On
incorporated in the basic algorithm. all optimization runs, the population size and the maximum
a) A procedure is imposed to check the feasibility of thgumber of gengration; were selected as 200 and 500, respec-
initial population individuals and the generated chiIdreHvely' The maximum size of the Pareto—optlmal setwas chqsen
through GA operations. This ensures the feasibility S ZQ solutions. Ifthg number of nondoml_nated Pareto (_)ptlmal
Pareto-optimal nondominated solutions. solutions exceeds this bo_und, the cI_u_s_terlng technique is used.
b) A procedure for updating the Pareto-optimal set is deveTI-he crossover anc_i m“"’?‘“O” prot_)at_thtl_es were selected as 0.9
oped. In every generation, the nondominated squtioﬂEd 0.01, respectively in all optimization runs.
in the first front are combined with the existing Pareto-
optimal set. The augmented set is processed to extract VI. RESULTS AND DISCUSSIONS
the nondominated solutions that represent the updatedHaving been applied for the first time, the proposed approach
Pareto-optimal set. was tested on the standard IEEE 30-bus 6-generator test system
c) A fuzzy-based mechanism is employed to extract the order to investigate its effectiveness. The single-line diagram
best compromise solution over the trade-off curve angt the IEEE test system is shown in Fig. 3 and the detailed data
assist the decision maker to adjust the generation levgle given in [5], [8]. The values of fuel cost and emission coef-
efficiently. ficients are given in Table I.
The computational flow chart of the proposed approach is To demonstrate the effectiveness of the proposed approach,
shown in Fig. 2. three different cases have been considered as follows:
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604 — 0.198 TABLE I
T i Cost THE BEST SOLUTIONS FORCOST AND EMISSION OPTIMIZED INDIVIDUALLY
1
3 Emission
603 '|I - 0.197 = Case 1 Case 2 Case 3
—_ ! g Cost Emission Cost Emission Cost Emission
g \ & Pgi 0.1095  0.4058  0.1152  0.4101  0.1375  0.4921
602 — ‘\‘ [— 0.196 S Pg2 0.2997 0.4592 0.3055 0.4631 0.3246 0.5419
g g Pg3 0.5245 0.5380 0.5972 0.5435 0.8075 0.6598
E Pgy 1.0160  0.3830 0.9809  0.3895 09792  0.5182
601 L 0105 W Pgs 0.5247  0.5379 0.5142  0.5439  0.1000  0.1267
Pgs 0.3596 0.5101 0.3542 0.5150 0.5163 0.5289
Cost 600.11 638.26 607.78 645.22 620.09 654.01
600 : l : : | I . 0.194 Emission  0.2221 0.1942  0.2199  0.1942  0.2297  0.2046
0 5 10 1 20 25 3 35 4
Generations
612 — — 0.198 0.220 —
611
Cost 0107 0.215 -+
e tL e Emission %
s i)
et 609 — 0.196 8 g 0.210 — .
g g £
608 — £ +
| o495 W 5 925 .
607 | 2 +
£ | .
606 : T I T T T I 0.194 g 0-200 .,
o 5 10 B 20 B 30 35 4 N
Generations * o4
640 — 0.230 0.195 + e e Ly,
1
- 0.225
Cost
g5 os. . = 0.190 T T T T T T ]
_ Emission |- 0.220 E 600 605 g10 615 o 625 39 635 g4
& 2 Cost ($/h)
T 630 — - 0215 §
g ﬁ Fig. 5. Pareto-optimal front of the proposed approach in a single run, Case 1.
l— 0.210
625 | 'E
0.205 TABLE 11l
TEST RESULTS OFBEST COST AND BEST EMISSION OF CASE 1 OF
620 T T 0.200 THE PROPOSEDAPPROACH
o 30 40 50 60
Generations Best Cost Best Emission
LP MOSST ~ Prop. LP MOSST  Prop.
Fig. 4. Convergence of cost and emission objective functions. (a) Case [5] [13] Case 1 [5] [13] Case 1
(b) Case 2. (c) Case 3. Pg1 0.1500 0.1125 0.1062  0.4000 0.4095 04116

Pg2 0.3000 0.3020 0.2897  0.4500 0.4626 0.4532

. . o P 0.5500 05311  0.5289  0.5500  0.5426  0.5329
Case 1) Only the generation capacity constraint is cons o

Poy 10500  1.0208  1.0025 04000 0.3884  0.3832

ered. Pgs 04600 05311 05402 05500  0.5427  0.5383
Case 2) The power balance constraint is also considered. é’Gé 0.3500 2-03625 0.3664 2-359028 05142 05148
Case 3) All constraints are considered. ost 60631 >89 60015 : 6ad.1l 638,31

: e e o _Emission ___0.2233 02222 0.2215 _ 0.1942  0.1942 _ 0.1942
At first, fuel cost and emission objectives are optimized indi-

vidually in order to explore the extreme points of the trade-off
surface and evaluate the diversity characteristics of the Pareftimal set has 20 nondominated solutions. Out of them, two
optimal solutions obtained by the proposed approach. The beshdominated solutions that represent the best cost and best
results of cost and emission functions when optimized individemission are given in Table Ill. The results of the proposed
ally are givenin Table Il. Convergence of fuel cost and emissi@pproach were compared to those reported using linear pro-
objectives are shown in Fig. 4. gramming [5] and multiobjective stochastic search technique
Case 1: For the purpose of comparison with the reportefl3]. The comparison results are given in Table Ill. It can be
results, the system is considered as lossless and the secwdgn that the savings with the proposed approach in the fuel
constrain is released. The problem was handled as a mutist are about 5 to 6 $/hr. This demonstrates the potential and
objective optimization problem where both cost and emissi@ffectiveness of the proposed approach to solve multiobjective
were optimized simultaneously with the proposed approadptimization problems. It can be concluded that the proposed
The diversity of the Pareto optimal set over the trade-off suapproach is capable of exploring more efficient and noninferior
face is shown in Fig. 5. It is worth mentioning that the Paretolutions of multiobjective optimization problems.
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0.220 — TABLE IV
TEST RESULTS OFBEST COST AND BEST EMISSION OF CASES2 & 3 OF
L THE PROPOSEDAPPROACH
0.215
+ Best Cost Best Emission
+ Case 2 Case 3 Case 2 Case 3
= 0210 Péi 0.1086 0.15975 0.4043 0.47975
g Pg; 0.3056 0.35339 0.4525 0.52868
= + Pg; 0.5818 0.79600 0.5525 0.67109
S 0205 Pos 0.9846 0.97176 0.4079 0.53174
2 Pas 0.5288 0.08684 0.5468 0.12571
@ Pas 0.3584 0.49709 0.5005 0.53010
E 0.200 — *s Cost 607.807 620.165 642.603 651.633
. Emission 0.22015 0.22826 0.19422 0.20470
+
had +
195 - +
0195 i - 0.220 —
0.190
! ! ! ' I 0.215 +
600 605 g10 615 g0 625 g3 635 4y
Cost ($/h)
£ 0210
Fig. 6. Pareto-optimal front of linear combination in 20 separate runs, Case 1. § +
5]
) c  0.205 +
For completeness and comparison purposes, the problem we 2 .
also treated as a single objective optimization problem by linear g +
combination of cost and emission objectives as follows: g 0200 — *.
+
+4
Minimize wF (P, 1 — w)AE(P, 19 e
tin (Pa) + (1 — w)AE(Pg) (19) 0185 IV
where the scaling factorwas selected as 3000 in this study and
w is a weighting factor. To generate 20 nondominated solutions, 0.190 T T 1
the algorithm was applied 20 times with varyingas a random 600 610 620 630 640 650
numberw = rand|0, 1]. The Pareto-optimal front of the single Cost ($/h)
objective problem in case 1 is shown in Fig. 6. Comparing the ) o
Fig. 7. Pareto-optimal front of the proposed approach in a single run, Case 2.

results shown in Figs. 5 and 6, it can be concluded {laaffhe
20 solutions shown in Fig. 5 that represent the results of the
proposed technique have been obtained in a single run while
the solutions shown in Fig. 6 have been obtained in 20 sepa-
rate runsyb) the solutions of the proposed approach shown in
Fig. 5 have better diversity characteristics and well-distributed
over the entire trade-off surfacg) there is no guarantee that

the single objective optimizer will span over the entire trade-off
surface while the proposed approach has an embedded diversi
preserving mechanism through fitness assignment procedure.

It is worth mentioning that the run time per generation of
the single objective approach to produce only one solution was 0.200 ~— +
14.22 s while that of the proposed approach to produce 20 solu +
tions was 14.74 s. It is quiet evident that the proposed approact
run time to generate the entire Pareto set is only 3.7% more that
that of the aggregation method to generate only one solution,
This demonstrates that the proposed approach is much faste
and more efficient than the classical techniques in handling the
multiobjective optimization problems.

Case 2: In this case, the transmission power loss has been
taken into account. Out of the 20 nondominated solutions in thig- 8. Pareto-optimal front of linear combination in 20 separate runs, Case 2.
Pareto optimal set, two nondominated solutions that represent
the best cost and best emission are given in Table IV. The di® seen that the proposed approach is superior and preserves the
tribution of the nondominated solutions obtained in a single rutiversity of the nondominated solutions over the trade-off front.
of the proposed approach is shown in Fig. 7. The distribution Case 3: In this case, all constraints have been taken into ac-
of the nondominated solutions of the single objective probleaount including security constraints. The maximum line flow
for case 2 when solved for 20 times is shown in Fig. 8. It cazapacities used in this case are 115% of the standard values

0.220 —

0.215

0.210 —

0.205 4

Emission (ton/h)

0.195 -

0.190 . , ,
610 620 630 650

Cost ($/h)

600 640
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0230 — TABLE VI
BEST SOLUTIONS FORCOST AND EMISSION
0.225 -+ # of Obj Case 1 Case 2 Case 3
Cost ___Emission Cost ___Emission Cost ____Emission
—_ Single  600.11  0.1942  607.78  0.1942  620.09  0.2046
£ 0207 & Multi 60015  0.1942  607.81  0.1942  620.17  0.2047
[}
= +
S 0.215 o .
@ VII. CONCLUSION
o— ++
£ _ .
T T . In this paper, a novel approach based on the Strength Pareto
s . Evolutionary algorithm has been presented and applied to envi-
0205 TAr e ronmental/economic power dispatch optimization problem. The
problem has been formulated as multiobjective optimization
0.200 T T T J problem with competing fuel cost and environmental impact
620 9% 630 33; o 645 650 899 objectives. A diversity-preserving mechanism is developed to
° find widely different Pareto-optimal solutions. A hierarchical
clustering technique is implemented to provide the operator
Fig. 9. Pareto-optimal front of the proposed approach in a single run, Casgdth a representative and manageable Pareto-optimal set
without destroying the characteristics of the trade-off front.
Moreover, a fuzzy-based mechanism is employed to extract
TABLE V the best compromise solution over the trade-off curve. The
BEST COMPROMISE SOLUTION OF THE PROPOSEDAPPROACH results show that the proposed approach is efficient for solving
multiobjective optimization where multiple Pareto-optimal
Case 1 Case 2 Case 3 . . . . i
o 3793 L 3 305¢ solutions can be found in one simulation run. In addition, the
Pos 0.3764 0.3848 0.4474 nondominated solutions in the obtained Pareto-optimal set are
Pgs 0.5300 0.5645 0.7327 well distributed and have satisfactory diversity characteristics.
£G4 g'gzgé 8'223‘1) 8'3% Since the proposed approach does not impose any limitation
Pz; 0.4153 04091 0.5364 on th(=T number of objec_tives, its extepsiqn to inc_lude more
Cost ($/h) 610.254 616.069 629.394 objectives, such as stability and security, is a straightforward
Emission (ton/h) 0.20055 0.20118 0.21043 process_
# of Obj Case 1 Case2 Case 3
Cost Emission Cost Emission Cost Emission
Single  600.11  0.1942 607.78  0.1942  620.09  0.2046
Multi 60015 01942 607.81  0.1942  620.17 02047 REFERENCES
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