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Environmental/Economic Power Dispatch Using
Multiobjective Evolutionary Algorithms

M. A. Abido, Member, IEEE

Abstract—This paper presents a new multiobjective evolu-
tionary algorithm for Environmental/Economic power Dispatch
(EED) problem. The EED problem is formulated as a nonlinear
constrained multiobjective optimization problem. A new Strength
Pareto Evolutionary Algorithm (SPEA) based approach is pro-
posed to handle the EED as a true multiobjective optimization
problem with competing and noncommensurable objectives. The
proposed approach employs a diversity-preserving mechanism to
overcome the premature convergence and search bias problems.
A hierarchical clustering algorithm is also imposed to provide the
decision maker with a representative and manageable Pareto-op-
timal set. Moreover, fuzzy set theory is employed to extract the best
compromise nondominated solution. Several optimization runs of
the proposed approach have been carried out on a standard test
system. The results demonstrate the capabilities of the proposed
approach to generate well-distributed Pareto-optimal solutions
of the multiobjective EED problem in one single run. The com-
parison with the classical techniques demonstrates the superiority
of the proposed approach and confirms its potential to solve the
multiobjective EED problem. In addition, the extension of the
proposed approach to include more objectives is a straightforward
process.

Index Terms—Environmental/economic power dispatch, evolu-
tionary algorithms, multiobjective optimization, strength pareto
evolutionary algorithm.

I. INTRODUCTION

T HE basic objective of economic dispatch (ED) of electric
power generation is to schedule the committed generating

unit outputs so as to meet the load demand at minimum operating
cost while satisfying all unit and system equality and inequality
constraints. In addition, the increasing public awareness of the
environmental protection and the passage of the Clean Air
Act Amendments of 1990 have forced the utilities to modify
their design or operational strategies to reduce pollution and
atmospheric emissions of the thermal power plants.

Several strategies to reduce the atmospheric emissions have
been proposed and discussed [1]–[3]. These include installation
ofpollutantcleaningequipment, switching to lowemission fuels,
replacement of the aged fuel-burners with cleaner ones, and
emission dispatching. The first three options require installation
of new equipment and/or modification of the existing ones
that involve considerable capital outlay and, hence, they can
be considered as long-term options. The emission dispatching
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option is an attractive short-term alternative in which both
emission and fuel cost is to be minimized. In recent years, this
option has received much attention [4]–[8] since it requires
only small modification of the basic economic dispatch to
include emissions.

Different techniques have been reported in the literature per-
taining to environmental/economic dispatch (EED) problem. In
[4] the problem has been reduced to a single objective problem
by treating the emission as a constraint with a permissible limit.
This formulation, however, has a severe difficulty in getting
the trade-off relations between cost and emission. Alternatively,
minimizing the emission has been handled as another objective
in addition to usual cost objective. A linear programming based
optimization procedures in which the objectives are considered
one at a time was presented in [5]. Unfortunately, the EED
problem is a highly nonlinear optimization problem. Therefore,
conventional optimization methods that make use of derivatives
and gradients, in general, are not able to locate or identify the
global optimum. On the other hand, many mathematical as-
sumptions such as analytic and differential objective functions
have to be given to simplify the problem. Furthermore, this ap-
proach does not give any information regarding the trade-offs
involved.

In other research direction, the EED problem was converted
to a single objective problem by linear combination of different
objectives as a weighted sum [6], [7]. The important aspect
of this weighted sum method is that a set of noninferior (or
Pareto-optimal) solutions can be obtained by varying the
weights. Unfortunately, this requires multiple runs as many
times as the number of desired Pareto-optimal solutions.
Furthermore, this method cannot be used to find Pareto-optimal
solutions in problems having a non-convex Pareto-optimal
front. To avoid this difficulty, the -constraint method for
multiobjective optimization was presented in [8], [9]. This
method is based on optimizing the most preferred objective
and considering the other objectives as constraints bounded
by some allowable levels . These levels are then altered
to generate the entire Pareto-optimal set. It is obvious that
this approach is time-consuming and tends to find weakly
nondominated solutions.

The recent direction is to handle both objectives simul-
taneously as competing objectives. A fuzzy multiobjective
optimization technique for the EED problem was proposed
[10]. However, the solutions produced are sub-optimal and
the algorithm does not provide a systematic framework for
directing the search toward Pareto-optimal front. An evolu-
tionary algorithm based approach evaluating the economic
impacts of environmental dispatching and fuel switching was
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presented in [11]. However, some of nondominated solutions
may be lost during the search process while some of dominated
solutions may be misclassified as nondominated ones due to
the selection process adopted. A fuzzy satisfaction-maximizing
decision approach was successfully applied to solve the EED
problem [12]. However, extension of the approach to include
more objectives is a very involved question. A multiobjective
stochastic search technique for solving the problem was
presented in [13]. However, the technique is computationally
involved and time-consuming. In addition, the search bias to
some regions may result in premature convergence, which
degrades the Pareto-optimal front.

Over the past few years, the studies on evolutionary algo-
rithms have shown that these methods can be efficiently used
to eliminate most of the difficulties of classical methods [14].
Since they are population-based techniques, multiple Pareto-
optimal solutions can, in principle, be found in one single run.
A genetic algorithm-based multiobjective technique was pre-
sented in [15] where multiple nondominated solutions can be
obtained in a single run. However, the problem has been consid-
erably simplified. In addition, the presented technique is com-
putationally involved due to ranking process during the fitness
assignment procedure.

In this paper, a new Strength Pareto Evolutionary algorithm
(SPEA) based approach is proposed for solving the multiob-
jective EED optimization problem. The diversity-preserving
mechanism embedded in the search algorithm makes it effec-
tive in exploring the problem space and capable of finding
widely different nondominated solutions. A hierarchical clus-
tering technique is implemented to provide the system operator
with a representative and manageable Pareto-optimal set. In
addition, a fuzzy-based mechanism is employed to extract the
best compromise solution. Several runs are carried out on the
standard IEEE test system and the results are compared to
the classical techniques. The effectiveness and potential of the
proposed approach to solve the multiobjective EED problem
are demonstrated.

II. PROBLEM STATEMENT

The environmental/economic power dispatch problem is to
minimize two competing objective functions, fuel cost and
emission, while satisfying several equality and inequality
constraints. Generally the problem is formulated as follows.

A. Problem Objectives

Minimization of Fuel Cost:The generators cost curves are
represented by quadratic functions with sine components. The
superimposed sine components represent the rippling effects
produced by the steam admission valve openings [16]. The total
$/h fuel cost can be expressed as

(1)

where is the number of generators,, , , , and are the
cost coefficients of theth generator, and is the real power

output of the th generator. is the vector of real power outputs
of generators and defined as

(2)

Minimization of Emission:The atmospheric pollutants such
as sulpher oxides and nitrogen oxides caused by
fossil-fueled thermal units can be modeled separately. However,
for comparison purposes, the totalton/h emission of
these pollutants can be expressed as [5], [8], [13]

(3)

where , , , , and are coefficients of theth generator
emission characteristics.

B. Objective Constraints

Generation capacity constraint:For stable operation, real
power output of each generator is restricted by lower and upper
limits as follows:

(4)

Power balance constraint:the total power generation must
cover the total demand and the real power loss in transmis-
sion lines . Hence,

(5)

Security constraints:for secure operation, the transmission
line loading is restricted by its upper limit as:

(6)

where is the number of transmission lines.

C. Problem Formulation

Aggregating the objectives and constraints, the problem can
be mathematically formulated as a nonlinear constrained multi-
objective optimization problem as follows.

(7)

(8)

(9)

where and are the problem constraints.

III. PRINCIPLE OFMULTIOBJECTIVE OPTIMIZATION

Many real-world problems involve simultaneous optimiza-
tion of several objective functions. Generally, these functions
are noncommensurable and often competing and conflicting ob-
jectives. Multiobjective optimization with such conflicting ob-
jective functions gives rise to a set of optimal solutions, instead
of one optimal solution. The reason for the optimality of many
solutions is that no one can be considered to be better than any
other with respect to all objective functions. These optimal so-
lutions are known asPareto-optimalsolutions.
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A general multiobjective optimization problem consists of a
number of objectives to be optimized simultaneously and is as-
sociated with a number of equality and inequality constraints. It
can be formulated as follows:

(10)

(11)

where is the th objective functions, is a decision vector that
represents a solution, is the number of objectives.

For a multiobjective optimization problem, any two solutions
and can have one of two possibilities: one dominates or

covers the other or none dominates the other. In a minimiza-
tion problem, without loss of generality, a solutioncovers or
dominates if the following two conditions are satisfied:

(12)

(13)

If any of the above conditions is violated, the solution
does not dominate the solution. If dominates the solution

, is called the nondominated solution. The solutions that
are nondominated within the entire search space are denoted as
Pareto-optimaland constitute thePareto-optimal set.This set is
also known asPareto-optimal front.

IV. PROPOSEDAPPROACH

A. Overview

Recently, the studies on evolutionary algorithms have shown
that these algorithms can be efficiently used to eliminate most of
the difficulties of classical methods which can be summarized
as:

• An algorithm has to be applied many times to find multiple
Pareto-optimal solutions.

• Most algorithms demand some knowledge about the
problem being solved.

• Some algorithms are sensitive to the shape of the Pareto-
optimal front.

• The spread of Pareto-optimal solutions depends on effi-
ciency of the single objective optimizer.

In general, the goal of a multiobjective optimization algo-
rithm is not only to guide the search toward the Pareto-optimal
front but also to maintain population diversity in the set of the
nondominated solutions. Unfortunately, a simple genetic algo-
rithm (GA) tends to converge toward a single solution due to
selection pressure and operator disruption [17].

B. Strength Pareto Evolutionary Algorithm (SPEA)[18]

The basic elements of the SPEA technique are briefly stated
and defined as follows:

• External set:It is a set of Pareto optimal solutions. These
solutions are stored externally and updated continuously.
Ultimately, the solutions stored in this set represent the
Pareto optimal front.

• Strength of a Pareto optimal solution:It is an assigned
real value for each individual in the external set.

The strength of an individual is proportional to the number
of individuals covered by it.

• Fitness of population individuals:The fitness of each in-
dividual in the population is the sum of the strengths of all
external Pareto optimal solutions by which it is covered.
It is worth mentioning that, unlike the technique presented
in [15], the fitness of a population member is determined
only from the individuals stored in the external set. This
reduces significantly the computational burden of the fit-
ness assignment process. It is worth mentioning that the
strength of a Pareto optimal solution is at the same time
its fitness.

Generally, the algorithm can be described in the following
steps.

Step 1) (Initialization) : Generate an
initial population and create the
empty external Pareto-optimal set.

Step 2) (External set updating): The ex-
ternal Pareto-optimal set is up-
dated as follows.

a) Search the population for
the nondominated individuals
and copy them to the external
Pareto set.

b) Search the external Pareto set
for the nondominated individ-
uals and remove all dominated
solutions from the set.

c) If the number of the individ-
uals externally stored in the
Pareto set exceeds a prespeci-
fied maximum size, reduce the
set by means of clustering.

Step 3) (Fitness assignment): Calculate
the fitness values of individuals
in both external Pareto set and
the population as follows.

a) Assign the strength for
each individual in the ex-
ternal set. The strength is
proportional to the number of
individuals covered by that
individual.

b) The fitness of each individual
in the population is the sum
of the strengths of all ex-
ternal Pareto solutions which
dominate that individual.
A small positive number is
added to the resulting sum to
guarantee that Pareto solu-
tions are most likely to be
produced.

Step 4) (Selection) : Combine the popu-
lation and the external set indi-
viduals. Select two individuals at
random and compare their fitness.
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Select the better one and copy it
to the mating pool.

Step 5) (Crossover and Mutation) : Per-
form the crossover and mutation
operations according to their
probabilities to generate the new
population.

Step 6) (Termination) : Check for stop-
ping criteria. If any one is sat-
isfied then stop else copy new
population to old population and
go to Step 2. In this study, the
search will be stopped if the gen-
eration counter exceeds its max-
imum number.

C. Reducing Pareto Set by Clustering

In some problems, the Pareto optimal set can be extremely
large or even contain an infinite number of solutions. In this
case, reducing the set of nondominated solutions without de-
stroying the characteristics of the trade-off front is desirable
from the decision maker’s point of view. An average linkage
based hierarchical clustering algorithm [19] is employed to re-
duce the Pareto set to manageable size. It works iteratively by
joining the adjacent clusters until the required number of groups
is obtained. It can be described as: given a setwhich its size
exceeds the maximum allowable size, it is required to form
a subset with the size . The algorithm is illustrated in the
following steps.

Step 1) Initialize cluster set ; each
individual constitutes a dis-
tinct cluster.

Step 2) If number of clusters , then
go to Step 5, else go to Step 3.

Step 3) Calculate the distance of all
possible pairs of clusters. The
distance of two clusters and

is given as the average dis-
tance between pairs of individuals
across the two clusters

(14)

where and are the numbers of
individuals in clusters and
respectively. The function re-
flects the Euclidian distance in
the objective space between indi-
viduals and .

Step 4) Determine two clusters with min-
imal distance . Combine these
clusters into a larger one. Go to
Step 2.

Step 5) For each cluster, find the cen-
troid and select the nearest in-
dividual to the centroid as a rep-
resentative and remove all other
individuals from the cluster.

Step 6) Compute the reduced nondominated
set by uniting the representa-
tives of the clusters.

D. Best Compromise Solution

Upon having the Pareto-optimal set of nondominated solu-
tion, the proposed approach presents one solution to the deci-
sion maker as the best compromise solution. Due to imprecise
nature of the decision maker’s judgment, each objective func-
tion of the -th solution is represented by a membership function

defined as [6]

(15)

For each nondominated solution, the normalized member-
ship function is calculated as

(16)

where is the number of nondominated solutions. The best
compromise solution is the one having the maximum of.

V. IMPLEMENTATION OF THE PROPOSEDAPPROACH

A. Real-Coded Genetic Algorithm

Due to difficulties of binary representation when dealing with
continuous search space with large dimensions, the proposed
approach has been implemented using real-coded genetic algo-
rithm (RCGA) [20]. A decision variable is represented by
a real number within its lower limit and upper limit , i.e.,

. The RCGA crossover and mutation operators are
described as follows:

Crossover: A blend crossover operator (BLX-) has been em-
ployed in this study. This operator starts by choosing randomly
a number from the interval ,
where and are the th parameter values of the parent so-
lutions and . In order to ensure the balance between
exploitation and exploration of the search space, is se-
lected. This operator can be depicted as shown in Fig. 1.

Mutation: The nonuniform mutation has been employed in
this study. In this operator, the new valueof the parameter
after mutation at generation at timeis given as

if
if

(17)

and;

(18)

where is a binary random number, is a random number
, is the maximum number of generations, and

is a positive constant chosen arbitrarily. In this study, was
selected. This operator gives a value such that the
probability of returning a value close to increases as the algo-
rithm advances. This makes uniform search in the initial stages
where is small and very locally at the later stages.
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Fig. 1. Blend crossover operator (BLX-�).

Fig. 2. Strength pareto evolutionary algorithm.

B. The Computational Flow

In this study, the basic SPEA has been developed in order
to make it suitable for solving real-world nonlinear constrained
optimization problems. The following modifications have been
incorporated in the basic algorithm.

a) A procedure is imposed to check the feasibility of the
initial population individuals and the generated children
through GA operations. This ensures the feasibility of
Pareto-optimal nondominated solutions.

b) A procedure for updating the Pareto-optimal set is devel-
oped. In every generation, the nondominated solutions
in the first front are combined with the existing Pareto-
optimal set. The augmented set is processed to extract
the nondominated solutions that represent the updated
Pareto-optimal set.

c) A fuzzy-based mechanism is employed to extract the
best compromise solution over the trade-off curve and
assist the decision maker to adjust the generation levels
efficiently.

The computational flow chart of the proposed approach is
shown in Fig. 2.

Fig. 3. Single-line diagram of IEEE 30-bus test system.

TABLE I
GENERATORFUEL COST AND EMISSION COEFFICIENTS

C. Settings of the Proposed Approach

The techniques used in this study were developed and im-
plemented on 133-MHz PC using FORTRAN language. On
all optimization runs, the population size and the maximum
number of generations were selected as 200 and 500, respec-
tively. The maximum size of the Pareto-optimal set was chosen
as 20 solutions. If the number of nondominated Pareto optimal
solutions exceeds this bound, the clustering technique is used.
The crossover and mutation probabilities were selected as 0.9
and 0.01, respectively in all optimization runs.

VI. RESULTS AND DISCUSSIONS

Having been applied for the first time, the proposed approach
was tested on the standard IEEE 30-bus 6-generator test system
in order to investigate its effectiveness. The single-line diagram
of the IEEE test system is shown in Fig. 3 and the detailed data
are given in [5], [8]. The values of fuel cost and emission coef-
ficients are given in Table I.

To demonstrate the effectiveness of the proposed approach,
three different cases have been considered as follows:
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Fig. 4. Convergence of cost and emission objective functions. (a) Case 1.
(b) Case 2. (c) Case 3.

Case 1) Only the generation capacity constraint is consid-
ered.

Case 2) The power balance constraint is also considered.
Case 3) All constraints are considered.
At first, fuel cost and emission objectives are optimized indi-

vidually in order to explore the extreme points of the trade-off
surface and evaluate the diversity characteristics of the Pareto
optimal solutions obtained by the proposed approach. The best
results of cost and emission functions when optimized individu-
ally are given in Table II. Convergence of fuel cost and emission
objectives are shown in Fig. 4.

Case 1: For the purpose of comparison with the reported
results, the system is considered as lossless and the security
constrain is released. The problem was handled as a multi-
objective optimization problem where both cost and emission
were optimized simultaneously with the proposed approach.
The diversity of the Pareto optimal set over the trade-off sur-
face is shown in Fig. 5. It is worth mentioning that the Pareto

TABLE II
THE BESTSOLUTIONS FORCOST AND EMISSION OPTIMIZED INDIVIDUALLY

Fig. 5. Pareto-optimal front of the proposed approach in a single run, Case 1.

TABLE III
TEST RESULTS OFBEST COST AND BEST EMISSION OF CASE 1 OF

THE PROPOSEDAPPROACH

optimal set has 20 nondominated solutions. Out of them, two
nondominated solutions that represent the best cost and best
emission are given in Table III. The results of the proposed
approach were compared to those reported using linear pro-
gramming [5] and multiobjective stochastic search technique
[13]. The comparison results are given in Table III. It can be
seen that the savings with the proposed approach in the fuel
cost are about 5 to 6 $/hr. This demonstrates the potential and
effectiveness of the proposed approach to solve multiobjective
optimization problems. It can be concluded that the proposed
approach is capable of exploring more efficient and noninferior
solutions of multiobjective optimization problems.
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Fig. 6. Pareto-optimal front of linear combination in 20 separate runs, Case 1.

For completeness and comparison purposes, the problem was
also treated as a single objective optimization problem by linear
combination of cost and emission objectives as follows:

(19)

where the scaling factorwas selected as 3000 in this study and
is a weighting factor. To generate 20 nondominated solutions,

the algorithm was applied 20 times with varyingas a random
number . The Pareto-optimal front of the single
objective problem in case 1 is shown in Fig. 6. Comparing the
results shown in Figs. 5 and 6, it can be concluded that:(a) The
20 solutions shown in Fig. 5 that represent the results of the
proposed technique have been obtained in a single run while
the solutions shown in Fig. 6 have been obtained in 20 sepa-
rate runs;(b) the solutions of the proposed approach shown in
Fig. 5 have better diversity characteristics and well-distributed
over the entire trade-off surface;(c) there is no guarantee that
the single objective optimizer will span over the entire trade-off
surface while the proposed approach has an embedded diversity
preserving mechanism through fitness assignment procedure.

It is worth mentioning that the run time per generation of
the single objective approach to produce only one solution was
14.22 s while that of the proposed approach to produce 20 solu-
tions was 14.74 s. It is quiet evident that the proposed approach
run time to generate the entire Pareto set is only 3.7% more than
that of the aggregation method to generate only one solution.
This demonstrates that the proposed approach is much faster
and more efficient than the classical techniques in handling the
multiobjective optimization problems.

Case 2: In this case, the transmission power loss has been
taken into account. Out of the 20 nondominated solutions in the
Pareto optimal set, two nondominated solutions that represent
the best cost and best emission are given in Table IV. The dis-
tribution of the nondominated solutions obtained in a single run
of the proposed approach is shown in Fig. 7. The distribution
of the nondominated solutions of the single objective problem
for case 2 when solved for 20 times is shown in Fig. 8. It can

TABLE IV
TEST RESULTS OFBEST COST AND BEST EMISSION OFCASES2 & 3 OF

THE PROPOSEDAPPROACH

Fig. 7. Pareto-optimal front of the proposed approach in a single run, Case 2.

Fig. 8. Pareto-optimal front of linear combination in 20 separate runs, Case 2.

be seen that the proposed approach is superior and preserves the
diversity of the nondominated solutions over the trade-off front.

Case 3: In this case, all constraints have been taken into ac-
count including security constraints. The maximum line flow
capacities used in this case are 115% of the standard values
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Fig. 9. Pareto-optimal front of the proposed approach in a single run, Case 3.

TABLE V
BEST COMPROMISESOLUTION OF THE PROPOSEDAPPROACH

given in [8]. The values of the best cost and the best emission
objectives with the proposed approach are given in Table IV. The
distribution of 20 nondominated solutions obtained in a single
run of the proposed approach is shown in Fig. 9. It can be seen
that the proposed approach preserves the diversity of the non-
dominated solutions over the trade-off front and solve effec-
tively the problem with all constraints considered.

Best compromise solutionThe membership functions given in
(15) and (16) are used to evaluate each member of the Pareto-
optimal set. Then, the best compromise solution that has the
maximum value of membership function can be extracted. This
procedure is applied in all cases and the best compromise solu-
tions are given in Table V.

Table VI gives a comparison between the results of single ob-
jective optimization given in Table II and that of multiobjective
optimization given in Tables III and IV. It is clear that the re-
sults in all cases are almost identical. This demonstrates that the
search of the proposed approach span over the entire trade-off
surface. In addition, the close agreement of the results shows
clearly the capability of the proposed approach to handle mul-
tiobjective optimization problems as the best solution of each
objective along with a manageable set of nondominated solu-
tions can be obtained in one single run.

TABLE VI
BEST SOLUTIONS FORCOST AND EMISSION

VII. CONCLUSION

In this paper, a novel approach based on the Strength Pareto
Evolutionary algorithm has been presented and applied to envi-
ronmental/economic power dispatch optimization problem. The
problem has been formulated as multiobjective optimization
problem with competing fuel cost and environmental impact
objectives. A diversity-preserving mechanism is developed to
find widely different Pareto-optimal solutions. A hierarchical
clustering technique is implemented to provide the operator
with a representative and manageable Pareto-optimal set
without destroying the characteristics of the trade-off front.
Moreover, a fuzzy-based mechanism is employed to extract
the best compromise solution over the trade-off curve. The
results show that the proposed approach is efficient for solving
multiobjective optimization where multiple Pareto-optimal
solutions can be found in one simulation run. In addition, the
nondominated solutions in the obtained Pareto-optimal set are
well distributed and have satisfactory diversity characteristics.
Since the proposed approach does not impose any limitation
on the number of objectives, its extension to include more
objectives, such as stability and security, is a straightforward
process.
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