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Abstract

Power system stability enhancement via robust coordinated design of a power system stabilizer and a static VAR compensator-based

stabilizer is thoroughly investigated in this paper. The coordinated design problem of robust excitation and SVC-based controllers over a

wide range of loading conditions and system configurations are formulated as an optimization problem with an eigenvalue-based objective

function. The real-coded genetic algorithm is employed to search for optimal controller parameters. This study also presents a singular value

decomposition-based approach to assess and measure the controllability of the poorly damped electromechanical modes by different control

inputs. The damping characteristics of the proposed schemes are also evaluated in terms of the damping torque coefficient over a wide range

of loading conditions. The proposed stabilizers are tested on a weakly connected power system. The non-linear simulation results and

eigenvalue analysis show the effectiveness and robustness of the proposed approach over a wide range of loading conditions.

q 2003 Published by Elsevier Science Ltd.
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1. Introduction

Since 1960s, low frequency oscillations have been

observed when large power systems are interconnected by

relatively weak tie lines. These oscillations may sustain and

grow to cause system separation if no adequate damping is

available [1,2]. Nowadays, the conventional power system

stabilizer (CPSS) is widely used by power system utilities.

Generally, it is important to recognize that machine

parameters change with loading make the machine behavior

quite different at different operating conditions. Since these

parameters change in a rather complex manner, a set of

stabilizer parameters, which stabilizes the system under a

certain operating condition, may no longer yield satisfactory

results when there is a drastic change in power system

operating conditions and configurations. Hence, power

system stabilizers (PSSs) should provide some degree of

robustness to the variations in system parameters, loading

conditions, and configurations.

H1 optimization techniques [3,4] have been applied to

robust PSS design problem. However, the importance and

difficulties in the selection of weighting functions of H1

optimization problem have been reported. In addition, the

additive and/or multiplicative uncertainty representation

cannot treat situations, where a nominal stable system

becomes unstable after being perturbed [5]. Moreover, the

pole-zero cancellation phenomenon associated with this

approach produces closed loop poles whose damping is

directly dependent on the open loop system (nominal

system) [6]. On the other hand, the order of the H1-based

stabilizer is as high as that of the plant. This gives rise to

complex structure of such stabilizers and reduces their

applicability.

Kundur et al. [7] have presented a comprehensive

analysis of the effects of the different CPSS parameters on

the overall dynamic performance of the power system. It is

shown that the appropriate selection of CPSS parameters

results in satisfactory performance during system upsets. In

addition, Gibbard [8] demonstrated that the CPSS provide

satisfactory damping performance over a wide range of

system loading conditions. Robust design of CPSSs in

multi-machine power systems using genetic algorithm is

presented in Ref. [9], where several loading conditions are

considered in the design process.

Although PSSs provide supplementary feedback stabiliz-

ing signals, they suffer a drawback of being liable to cause

great variations in the voltage profile and they may even
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result in leading power factor operation under severe

disturbances. The recent advances in power electronics

have led to the development of the flexible alternating current

transmission systems (FACTS). Generally, a potential

motivation for the accelerated use of FACTS devices is the

deregulation environment in contemporary utility business.

Along with primary function of the FACTS devices, the real

power flow can be regulated to mitigate the low frequency

oscillations and enhance power system stability.

Recently, several FACTS devices have been

implemented and installed in practical power systems [10,

11]. In the literature, a little work has been done on the

coordination problem investigation of excitation and

FACTS-based stabilizers. Mahran et al. [12] presented a

coordinated PSS and SVC control for a synchronous

generator. However, the proposed approach uses recursive

least squares identification, which reduces its effectiveness

for on-line applications. Rahim and Nassimi [13] presented

optimum feedback strategies for both SVC and exciter

controls. However, the proposed controller requires some or

all states to be measurable or estimated. Moreover, it leads

to a centralized controller for multi-machine power systems,

which reduces its applicability and reliability. Noroozian

and Anderson [14] presented a comprehensive analysis of

damping of power system electromechanical oscillations

using FACTS, where the impact of transmission line loading

and load characteristics on the damping effect of these

devices have been discussed. Wang and Swift [15] have

discussed the damping torque contributed by FACTS

devices, where several important points have been analyzed

and confirmed through simulations. However, all controllers

were assumed proportional and no efforts have been done

towards the controller design. On the other hand, it is

necessary to measure the electromechanical mode controll-

ability in order to assess the effectiveness of different

controllers and form a clear inspiration about the coordi-

nation problem requirements. A comprehensive study of the

coordination problem requirements among PSSs and

different FACTS devices has been presented in Ref. [16].

However, no efforts have been done towards the coordinated

design of the stabilizers investigated.

In this paper, a comprehensive assessment of the effects

of the excitation and SVC control when applied indepen-

dently and also through coordinated application has been

carried out. The design problem is transformed into an

optimization problem, where the real-coded genetic algor-

ithm (RCGA) is employed to search for the optimal settings

of stabilizer parameters. A controllability measure-based on

singular value decomposition (SVD) is used to identify the

effectiveness of each control input. In addition, the damping

torque coefficient is evaluated with the proposed stabilizers

over a wide range of loading conditions. For completeness,

the eigenvalue analysis and non-linear simulation results are

carried out to demonstrate the effectiveness and robustness

of the proposed stabilizers to enhance system dynamic

stability.

2. Power system model

2.1. Generator

In this study, a single machine infinite bus system as

shown in Fig. 1 is considered. The generator is equipped

with PSS and the system has an SVC at the midpoint of the

line as shown in Fig. 1. The line impedance is Z ¼ R þ jX

and the generator has a local load of admittance YL ¼ g þ

jb: The generator is represented by the third-order model

comprising of the electromechanical swing equation and the

generator internal voltage equation [1,2]. The swing

equation is divided into the following equations

rd ¼ vbðv2 1Þ ð1Þ

rv ¼ ðPm 2 Pe 2 Dðv2 1ÞÞ=M ð2Þ

where Pm and Pe are the input and output powers of the

generator, respectively; M and D are the inertia constant and

damping coefficient, respectively; d and v are the rotor

angle and speed, respectively; r is the derivative operator

d=dt: The output power of the generator can be expressed in

terms of the d-axis and q-axis components of the armature

current, i, and terminal voltage, v, as

Pe ¼ vdid þ vqiq ð3Þ

The internal voltage, E0
q; equation is

rE0
q ¼ ðEfd 2 ðxd 2 x0dÞid 2 E0

qÞ=T
0
do ð4Þ

Here, Efd is the field voltage; T 0
do is the open circuit field

time constant; xd and x0d are d-axis reactance and d-axis

transient reactance of the generator, respectively.

2.2. Exciter and PSS

The IEEE Type-ST1 excitation system shown in Fig. 2 is

considered. It can be described as

rEfd ¼ ðKAðVref 2 v þ uPSSÞ2 EfdÞ=TA ð5Þ

where KA and TA are the gain and time constant of the

excitation system, respectively; Vref is the reference voltage.

As shown in Fig. 2, a conventional lead–lag PSS is installed

in the feedback loop to generate a stabilizing signal uPSS: In

Fig. 1. Single machine infinite bus system.
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Eq. (5), the terminal voltage v can be expressed as

v ¼ ðv2
d þ v2

qÞ
1=2 ð6Þ

vd ¼ xqiq ð7Þ

vq ¼ E0
q 2 x0did ð8Þ

where xq is the q-axis reactance of the generator.

2.3. SVC-based stabilizer

Fig. 3 shows the block diagram of an SVC with a lead–

lag compensator. The susceptance of the SVC, B, can be

expressed as

rB ¼ ðKsðBref 2 uSVCÞ2 BÞ=Ts ð9Þ

where Bref is the reference susceptance of SVC; Ks and Ts

are the gain and time constant of the SVC. As shown in

Fig. 3, a conventional lead–lag controller is installed in the

feedback loop to generate the SVC stabilizing signal uSVC:

2.4. Linearized model

In the design of electromechanical mode damping

controllers, the linearized incremental model around a

nominal operating point is usually employed [1,2]. Linear-

izing the expressions of id and iq and substituting into the

linear form of Eqs. (1)–(9), yield the following linearized

power system model
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In short;

rX ¼ AX þ HU ð11Þ

Here, the state vector X is ½Dd;Dv;DE0
q;DEfd�

T and the

control vector U is ½uPSS;DB�T: The block diagram of the

linearized power system model is depicted as shown in

Fig. 4, where K1 –K6; Kp; Kq; and Kv are linearization

constants defined as

K1 ¼
›Pe

›d
; K2 ¼

›Pe

›E0
q

; KpB ¼
›Pe

›B
;

K4 ¼
›Eq

›d
; K3 ¼

›Eq

›E0
q

; KqB ¼
›Eq

›B
;

K5 ¼
›v

›d
; K6 ¼

›v

›E0
q

; KvB ¼
›v

›B

ð12Þ

3. The proposed approach

3.1. Electromechanical mode identification

The state equations of the linearized model can be used to

determine the eigenvalues of the system matrix A. Out of

these eigenvalues, there is a mode of oscillations related to

machine inertia. For the stabilizers to be effective, it is

extremely important to identify the eigenvalue associated

with the electromechanical mode. In this study, the

participation factors method [17] is used.

3.2. Controllability measure

To measure the controllability of the electromechanical

mode by a given input, the SVD is employed in this study.

Fig. 2. IEEE Type-ST1 excitation system with PSS.

Fig. 3. SVC with lead–lag controller.
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Mathematically, if G is an m £ n complex matrix, then there

exist unitary matrices W and V with dimensions of m £ m

and n £ n; respectively, such that G can be written as

G ¼ WSVH ð13Þ

where

S ¼
S1 0

0 0

" #
;

S1 ¼ diagðs1;…;srÞ with s1 $ · · · $ sr $ 0

ð14Þ

where r ¼ min{m; n} and s1;…;sr are the singular values

of G.

The minimum singular value sr represents the distance

of the matrix G from all the matrices with a rank of r 2 1:

This property can be utilized to quantify modal controll-

ability [18]. In this study, the matrix H in Eq. (11) can be

written as H ¼ ½h1; h2�; where hi is the column of matrix H

corresponding to the ith input. The minimum singular value,

smin; of the matrix ½lI 2 Ahi� indicates the capability of the

ith input to control the mode associated with the eigenvalue

l. As a matter of fact, higher the smin; the higher the

controllability of this mode by the input considered. Having

been identified, the controllability of the electromechanical

mode can be examined with both inputs in order to identify

the most effective one to control that mode.

3.3. Stabilizer design

A widely used conventional lead–lag structure for both

excitation and SVC-based stabilizers, shown in Figs. 2 and

3, is considered. In this structure, the washout time constant

Tw and the time constants T2 and T4 are usually prespecified.

The controller gain K and time constants T1 and T3 are to be

determined.

In this study, several loading conditions representing

nominal, light, high, and leading power factor without and

with system parameter uncertainties are considered to

ensure the robustness of the proposed stabilizers. In the

stabilizer design process, it is aimed to maximize the

damping ratio, z, of the poorly damped electromechanical

mode eigenvalues at the entire range of the specified loading

conditions. Therefore, the following eigenvalue-based

objective function J is used.

J ¼min{zi : zi is the electromechanical mode

damping ratio of the ith loading condition} ð15Þ

In the optimization process, it is aimed to maximize J while

satisfying the problem constraints that are the optimized

parameter bounds. Therefore, the design problem can be

formulated as the following optimization problem.

Maximize J ð16Þ

subject to

Kmin #K #Kmax ð17Þ

Tmin
1 # T1 # Tmax

1 ð18Þ

Tmin
3 # T3 # Tmax

3 ð19Þ

The proposed approach employs RCGA to solve this

optimization problem and search for optimal or near

optimal set of the optimized parameters. To investigate

the capability of PSS and SVC controller when applied

individually and also through coordinated application, both

Fig. 4. Block diagram of the linearized model.
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are designed independently first and then in a coordinated

manner.

3.4. Damping torque coefficient calculation

To assess the effectiveness of the designed stabilizers, the

damping torque coefficient is evaluated and analyzed. The

torque can be decomposed into synchronizing and damping

components as follows

DTeðtÞ ¼ KsynDdðtÞ þ KdDvðtÞ ð20Þ

where Ksyn and Kd are the synchronizing and damping

torque coefficients, respectively. It is worth mentioning that

Kd is a damping measure to the electromechanical mode of

oscillations [19].

In order to calculate Ksyn and Kd; the error between the

actual torque deviation and that obtained by summing both

components can be defined as

EðtÞ ¼ DTeðtÞ2 ðKsynDdðtÞ þ KdDvðtÞÞ ð21Þ

Then Ksyn and Kd are computed to minimize the sum of the

squared errors over the simulation period tsim as

XN
½E�2 ¼

XN
½DTe 2 ðKsynDdþ KdDvÞ�

2 ð22Þ

where tsim ¼ NTsamp, Tsamp is the sampling period. Thus,

these coefficients should satisfy

›

›Ksyn

XN
½E�2 ¼ 0 and

›

›Kd

XN
½E�2 ¼ 0 ð23Þ

That yields

XN
DTeDd ¼ Ksyn

XN
½Dd�2 þ Kd

XN
½DvDd� ð24Þ

XN
DTeDv ¼ Kd

XN
½Dv�2 þ Ksyn

XN
½DvDd� ð25Þ

Solving Eqs. (24) and (25), Ksyn and Kd can be calculated.

4. Implementation

4.1. Real-coded genetic algorithm

Genetic algorithms (GA) are search algorithms based on

the mechanics of natural selection and survival-of-the-

fittest. One of the most important features of the GA as a

method of control system design is the fact that minimal

knowledge of the plant under investigation is required.

Since the GA optimize, a performance index based on

input/output relationships only, far less information than

other design techniques is needed. Further, as the GA

search is directed towards increasing a specified

performance, the net result is a controller, which ultimately

meets the performance criteria. In addition, because the GA

do not need an explicit mathematical relationship between

the performance of the system and the search update, the

GA offer a more general optimization methodology than

conventional analytical techniques.

Due to difficulties of binary representation when dealing

with continuous search space with large dimension, the

proposed approach has been implemented using RCGA

[20]. A decision variable xi is represented by a real number

within its lower limit ai and upper limit bi, i.e. xi [ ½ai; bi�:

The RCGA crossover and mutation operators are described

as follows:

Crossover. A blend crossover operator (BLX-a) has been

employed in this study. This operator starts by choosing

randomly a number from the interval ½xi 2 aðyi 2

xiÞ; yi þ aðyi 2 xiÞ�; where xi and yi are the ith parameter

values of the parent solutions and xi , yi. To ensure the

balance between exploitation and exploration of the

search space, a ¼ 0.5 is selected. This operator is

depicted in Fig. 5.

Mutation. The non-uniform mutation operator has been

employed in this study. In this operator, the new value

x0i of the parameter xi after mutation at generation t is

given as

x0i ¼
xi þ Dðt; bi 2 xiÞ; if t ¼ 0;

xi 2 Dðt; xi 2 aiÞ; if t ¼ 1;

(
ð26Þ

Dðt; yÞ ¼ yð1 2 rð12ðt=gmaxÞÞ
b

Þ ð27Þ

where t is a binary random number, r is a random

number r [ ½0; 1�; gmax is the maximum number of

generations, and b is a positive constant chosen

arbitrarily. In this study, b ¼ 5 was selected. This

operator gives a value x0i [ ½ai; bi� such that the

probability of returning a value close to xi increases as

the algorithm advances. This makes uniform search in

the initial stages, where t is small and very locally at

the later stages.

4.2. RCGA application

Linearizing the system model at each loading condition

of the specified range, the electromechanical mode is

identified and its damping ratio is calculated. Then, the

objective function is evaluated and RCGA is applied to

Fig. 5. Blend crossover operator (BLX-a).
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search for optimal settings of the optimized parameters of

the proposed control schemes. In our implementation, the

crossover and mutation probabilities of 0.9 and 0.01,

respectively, are found to be quite satisfactory. The number

of individuals in each generation is selected to be 100. In

addition, the search will terminate if the best solution does

not change for more than 50 generations or the number of

generations reaches 500. The computational flow chart of

the proposed design approach is shown in Fig. 6.

5. Results and discussions

5.1. Loading conditions and proposed stabilizers

In this study, the PSS and SVC-based controller

parameters are optimized over a wide range of operating

conditions and system parameter uncertainties. Four loading

conditions representing nominal, light, heavy, and leading

power factor are considered. Each loading condition is

considered without and with parameter uncertainties as

given in Table 1. Hence, the total number of points

considered for the design process is 16.

The proposed approach has been implemented on a

weakly connected power system. The detailed data of the

power system used in this study is given in Ref. [1]. The

convergence rate of the objective function J when PSS and

SVC controller designed individually and through coordi-

nated design is shown in Fig. 7. It can be seen that the

damping characteristics of the coordinated design approach

are much better than those of the individual design one. The

final settings of the optimized parameters for the proposed

stabilizers are given in Table 2.

5.2. Mode controllability measure

With each input signal, the minimum singular value smin

has been estimated to measure the controllability of the

electromechanical mode from that input. Fig. 8 shows smin

with loading conditions over the range of Pe ¼ [0.05 2 1.4]

pu and Q [ { 2 0:4; 0:0; 0:4} pu. At each loading condition

in the specified range, the system model is linearized, the

electromechanical mode is identified, and the SVD-based

controllability measure is implemented. It can be seen that

the electromechanical mode controllability is almost the

same with both PSS and SVC. This controllability increases

with the loading.

5.3. Damping torque coefficient

In order to evaluate the effectiveness of the proposed

stabilizers, the damping torque coefficient has been

Table 2

Optimal parameter settings of the proposed stabilizers

Individual design Coordinated design

PSS SVC PSS SVC

K 17.849 300.00 43.457 99.737

T1 0.4334 0.2143 0.1647 0.7650

T2 0.1000 0.3000 0.1000 0.3000

T3 – 0.0100 – 0.3789

T4 – 0.3000 – 0.3000

Fig. 6. Flow chart of the proposed design approach.

Table 1

Loading conditions and parameter uncertainties

Loading condition ðP;QÞ (pu) Parameter uncertainties

Nominal ð1:0; 0:015Þ No parameter uncertainty

Light ð0:3; 0:100Þ 30% increase of line reactance X

Heavy ð1:1; 0:100Þ 30% decrease of field time constant T 0
do

Leading pf ð0:7;20:300Þ 25% decrease of machine inertia M

Fig. 7. Objective function convergence.
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estimated with PSS and SVC-based stabilizer when

designed individually and in coordinated manner. Fig. 9

shows Kd versus the loading variations with PSS only, SVC-

based stabilizer only, and coordinated PSS and SVC-based

stabilizer. Consistent with the findings of Refs. [15,16], the

SVC provides negative damping at low loading conditions

in particular with positive Q. This problem is alleviated with

the coordinated design approach. It can be also seen that

PSS outperforms SVC and does not suffer from such a

problem. It is also evident that the coordinated design of

Fig. 8. Minimum singular value with loading variations. (a) Q ¼ 20.4 pu,

(b) Q ¼ 0.0 pu, (c) Q ¼ 0.4 pu.

Fig. 9. Damping coefficient with the loading variations. (a) Q ¼ 20.4 pu,

(b) Q ¼ 0.0 pu, (c) Q ¼ 0.4 pu.
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PSS and SVC-based stabilizer provides great damping

characteristics and enhance significantly the system stability

compared to individual design of these stabilizers.

5.4. Eigenvalue analysis and non-linear simulation

For completeness and verification, all the proposed

stabilizers were tested at the following disturbances and

loading conditions.

(a) Nominal loading ðP;QÞ ¼ ð1:0; 0:015Þ pu with 6-cycle

three-phase fault.

(b) Light loading ðP;QÞ ¼ ð0:3; 0:015Þ pu with 6-cycle

three-phase fault.

(c) Heavy loading ðP;QÞ ¼ ð1:1; 0:4Þ pu with 3-cycle

three-phase fault.

The system eigenvalues without and with the proposed

stabilizers at these loading conditions are given in

Tables 3–5, respectively, where the first row represents

the electromechanical mode eigenvalues and their damp-

ing ratios. It is clear that the system stability is greatly

enhanced with the proposed stabilizers. It can also be seen

that the coordinated design outperforms the individual

Table 3

System eigenvalues with the proposed stabilizers at nominal loading

No control PSS

only

SVC

only

Coordinated

design

þ0.30

^ j4.96;

20.060

21.80 ^ j3.52;

0.466

20.57 ^ j5.98; 0.095 22.21 ^ j3.05;

0.587

210.39

^ j3.29

23.24 ^

j9.00

22.98 ^ j1.06 27.01 ^ j12.20

– 220.12;

20.204

220.24; 212.57 22.85 ^ j0.34

– – 26.96; 20.204 217.93; 214.77

– – – 20.210; 20.200

Table 4

System eigenvalues with the proposed stabilizers at light loading

No control PSS

only

SVC

only

Coordinated

design

20.01 ^ j4.85;

0.002

21.16 ^ j4.67;

0.241

20.21 ^ j4.85;

0.043

21.31 ^ j5.03;

0.252

210.09 ^

j3.83

25.47 ^ j6.26 29.84 ^ j3.03 26.94 ^ j5.92

– 216.93;

20.202

23.40 ^ j0.82 23.03 ^ j0.40

– – 219.96; 20.200 220.50; 213.80

– – – 20.204; 20.200

Table 5

System eigenvalues with the proposed stabilizers at heavy loading

No control PSS

only

SVC

only

Coordinated

design

þ0.49 ^ j3.69;

20.131

21.02 ^ j2.84;

0.338

20.49 ^ j5.23;

0.093

21.73 ^ j1.67;

0.719

210.58 ^

j3.69

24.05 ^ j8.68 220.52; 210.87 27.67 ^ j12.65

– 220.05; 20.207 29.02; 23.71 215.69 ^ j2.74

– – 21.74; 20.217 23.90; 22.74

– – – 20.226; 20.200

Fig. 10. System response for 6-cycle fault disturbance with nominal loading.

(a) Rotor angle response; (b) PSS stabilizing signal; (c) BSVC variation.
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design at all points considered in the sense that the

damping ratios of the electromechanical modes at all

points are greatly improved.

The non-linear time domain simulations have been

carried out at the disturbances and the loading conditions

specified above. Fig. 10 shows the system response with

6-cycle fault disturbance at the nominal loading con-

dition. It can be seen that the coordinated design

approach provides the best damping characteristics and

enhance greatly the first swing stability. The response of

the proposed schemes is compared to that of CPSS given

in Ref. [1]. It is clear that the system response with the

proposed PSS is better than that with the CPSS in the

sense of the settling time is reduced. The stabilizing

signal of PSS, UPSS, and the susceptance of the SVC,

BSVC, when designed individually and in coordinated

manner are compared and shown in Fig. 10(b) and (c),

respectively. It is clear that the control effort is greatly

reduced with the coordinated design approach.

Fig. 11 shows the results with a 3-cycle fault

disturbance at a heavy loading condition. It is clear that

the first swing stability is greatly improved with the

coordinated design approach. This confirms the findings of

Fig. 9. The proposed schemes outperform the CPSS and

the control efforts are significantly reduced. This confirms

the potential of the proposed approach for ultimate

utilization of the control schemes to enhance the system

dynamic stability.

6. Conclusion

In this study, the power system stability enhancement via

PSS and SVC-based stabilizer when applied independently

and also through coordinated application was discussed and

investigated. For the proposed stabilizer design problem, an

eigenvalue-based objective function to increase the system

damping was developed. Then, the RCGA was implemented

to search for the optimal stabilizer parameters. In addition, a

controllability measure for the poorly damped electrome-

chanical modes using a SVD approach was used to assess

the effectiveness of the proposed stabilizers. The damping

characteristics of the proposed schemes were also evaluated

in terms of the damping torque coefficient. The proposed

stabilizers have been tested on a weakly connected power

system with different loading conditions. The eigenvalue

analysis and non-linear simulation results show the effec-

tiveness and robustness of the proposed stabilizers to

enhance the system stability.
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