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Abstract

In this paper, a novel multiobjective evolutionary algorithm for environmental/economic power dispatch (EED) optimization

problem is presented. The EED problem is formulated as a nonlinear constrained multiobjective optimization problem with both

equality and inequality constraints. A new nondominated sorting genetic algorithm based approach is proposed to handle the

problem as a true multiobjective optimization problem with competing and noncommensurable objectives. The proposed approach

employs a diversity-preserving mechanism to overcome the premature convergence and search bias problems and produce a well-

distributed Pareto-optimal set of nondominated solutions. A hierarchical clustering algorithm is also imposed to provide the

decision maker with a representative and manageable Pareto-optimal set. Moreover, fuzzy set theory is employed to extract the best

compromise solution over the trade-off curve. Several optimization runs of the proposed approach are carried out on the standard

IEEE 30-bus test system. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed

Pareto-optimal nondominated solutions of the multiobjective EED problem in one single run. Simulation results with the proposed

approach have been compared to those reported in the literature. The comparison demonstrates the superiority of the proposed

approach and confirms its potential to solve the multiobjective EED problem.

# 2003 Published by Elsevier Science B.V.
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1. Introduction

The basic objective of economic dispatch (ED) of

electric power generation is to schedule the committed

generating unit outputs so as to meet the load demand at

minimum operating cost while satisfying all unit and

system equality and inequality constraints. This makes

the ED problem a large-scale highly nonlinear con-

strained optimization problem. In addition, the increas-

ing public awareness of the environmental protection

and the passage of the Clean Air Act Amendments of

1990 have forced the utilities to modify their design or

operational strategies to reduce pollution and atmo-

spheric emissions of the thermal power plants [1].

Several strategies to reduce the atmospheric emissions

have been proposed and discussed [1�/3]. These include

installation of pollutant cleaning equipment such as gas

scrubbers and electrostatic precipitators, switching to

low emission fuels, replacement of the aged fuel-burners

and generator units with cleaner and more efficient ones,

and emission dispatching. The first three options require

installation of new equipment and/or modification of

the existing ones that involve considerable capital outlay

and, hence, they can be considered as long-term options.

The emission dispatching option is an attractive short-

term alternative in which the emission in addition to the

fuel cost objective are to be minimized. Thus, the ED

problem can be handled as a multiobjective optimiza-

tion problem with noncommensurable and contradic-

tory objectives. In recent years, this option has received

much attention [4�/11] since it requires only small

modification of the basic ED to include emissions.

Different techniques have been reported in the

literature pertaining to environmental/economic dis-

patch (EED) problem. In Refs. [4,5] the problem has

been reduced to a single objective problem by treating

the emission as a constraint with a permissible limit.

This formulation, however, has a severe difficulty in

getting the trade-off relations between cost and emis-

sion. Alternatively, Minimizing the emission has been
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handled as another objective in addition to usual cost

objective. A linear programming based optimization

procedures in which the objectives are considered one at

a time was presented in Ref. [6]. Unfortunately, the
EED problem is a highly nonlinear and a multimodal

optimization problem. Therefore, conventional optimi-

zation methods that make use of derivatives and

gradients, in general, not able to locate or identify the

global optimum. On the other hand, many mathematical

assumptions such as analytic and differential objective

functions have to be given to simplify the problem.

Furthermore, this approach does not give any informa-
tion regarding the trade-offs involved.

In other research direction, the multiobjective EED

problem was converted to a single objective problem by

linear combination of different objectives as a weighted

sum [7�/10]. The important aspect of this weighted sum

method is that a set of noninferior (or Pareto-optimal)

solutions can be obtained by varying the weights.

Unfortunately, this requires multiple runs as many times
as the number of desired Pareto-optimal solutions.

Furthermore, this method cannot be used to find

Pareto-optimal solutions in problems having a noncon-

vex Pareto-optimal front. In addition, there is no

rational basis of determining adequate weights and the

objective function so formed may lose significance due

to combining noncommensurable objectives. To avoid

this difficulty, the o -constraint method for multiobjec-
tive optimization was presented in Refs. [11�/13]. This

method is based on optimization of the most preferred

objective and considering the other objectives as con-

straints bounded by some allowable levels o . These levels

are then altered to generate the entire Pareto-optimal

set. The most obvious weaknesses of this approach are

that it is time-consuming and tends to find weakly

nondominated solutions.
Goal programming method was also proposed for

multiobjective EED problem [14]. In this method, a

target or a goal to be achieved for each objective is

assigned and the objective function will then try to

minimize the distance from the targets to the objectives.

Although the method is computationally efficient, it will

yield an inferior solution rather than a noninferior one if

the goal point is chosen in the feasible domain. Hence,
the main drawback of this method is that it requires a

priori knowledge about the shape of the problem search

space.

The recent direction is to handle both objectives

simultaneously as competing objectives instead of sim-

plifying the multiobjective problem to a single objective

problem. A fuzzy multiobjective optimization technique

for EED problem was proposed [15]. However, the
solutions produced are sub-optimal and the algorithm

does not provide a systematic framework for directing

the search towards Pareto-optimal front. An evolution-

ary algorithm based approach evaluating the economic

impacts of environmental dispatching and fuel switching

was presented in Ref. [16]. The important aspect of this

approach is that it produces several alternatives along

the Pareto-optimal front. However, some of nondomi-

nated solutions may be lost during the search process

while some of dominated solutions may be misclassified

as nondominated ones due to the selection process

adopted. In addition, no effort has been done to prevent

the algorithm from its bias towards some regions. A

fuzzy satisfaction-maximizing decision approach was

successfully applied to solve the biobjective EED

problem regarding minimization of both fuel cost and

environmental impact of NOx emissions [17]. However,

extension of the approach to include more objectives

such as security and reliability is a very involved

question. A multiobjective stochastic search technique

for the multiobjective EED problem was presented in

Ref. [18]. This technique hybridizes genetic algorithms

(GA) and simulated annealing in the sense that the

selection process of GA is enhanced by local heuristic

search for better search capabilities. However, the

technique is computationally involved and time-con-

suming. In addition, its severe drawback is the genetic

drift and search bias to some regions in the space that

result in premature convergence. This degrades the

Pareto-optimal front and more efforts should be done

to preserve the diversity of the nondominated solutions.

On the contrary, the studies on evolutionary algo-

rithms, over the past few years, have shown that these

methods can be efficiently used to eliminate most of the

difficulties of classical methods [19�/22]. Since they use a

population of solutions in their search, multiple Pareto-

optimal solutions can, in principle, be found in one

single run.
In this paper, a new nondominated sorting genetic

algorithm (NSGA) based approach is proposed for

solving the environmental/economic power dispatch

optimization problem. The problem is formulated as a

nonlinear constrained multiobjective optimization pro-

blem where fuel cost and environmental impact are

treated as competing objectives. A diversity-preserving

mechanism is developed and superimposed on the

search algorithm to find widely different Pareto-optimal

solutions. In addition, a hierarchical clustering techni-

que is implemented to provide the power system

operator with a representative and manageable Pareto-

optimal set without destroying the characteristics of the

trade-off front. Moreover, a fuzzy-based mechanism is

employed to extract the best compromise solution over

the trade-off curve. The potential of the proposed

approach to handle the multiobjective EED problem is

investigated and discussed. Several runs are carried out

on a standard test system and the results are compared

to the classical multiobjective optimization techniques.

The effectiveness and potential of the proposed ap-
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proach to solve the multiobjective EED problem are

demonstrated.

2. Problem formulation

The EED problem is to minimize two competing
objective functions, fuel cost and emission, while

satisfying several equality and inequality constraints.

Generally the problem is formulated as follows.

2.1. Problem objectives

2.1.1. Minimization of fuel cost

The generator cost curves are represented by quad-

ratic functions with sine components to represent the

valve loading effects. The total $/h fuel cost F (PG) can

be expressed as

F (PG)�
XN

i�1

ai�biPGi
�ciP

2
Gi

� jdi sin[ei(P
min
Gi

�PGi
)]j (1)

where N is the number of generators, ai , bi , ci , di , and ei

are the cost coefficients of the ith generator, and PGi
is

the real power output of the ith generator. PG is the

vector of real power outputs of generators and defined

as

PG� [PG1
;PG2

; . . . ;PGN
]T (2)

2.1.2. Minimization of emission

The total ton/h emission E (PG) of atmospheric

pollutants such as sulpher oxides SOx and nitrogen

oxides NOx caused by fossil-fueled thermal units can be

expressed as

E(PG)�
XN

i�1

10�2(ai�biPGi
�giP

2
Gi

)�zi exp(liPGi
) (3)

where ai , bi , gi , zi , and li are coefficients of the i th

generator emission characteristics.

2.2. Problem constraints

2.2.1. Generation capacity constraint

For stable operation, real power output of each
generator is restricted by lower and upper limits as

follows:

Pmin
Gi

0PGi
0Pmax

Gi
; i�1; . . . ;N (4)

2.2.2. Power balance constraint

The total power generation must cover the total

demand PD and the real power loss in transmission

lines Ploss. Hence,

XN

i�1

PGi
�PD�Ploss�0 (5)

2.2.3. Security constraints

For secure operation, the transmission line loading Sl

is restricted by its upper limit as:

Sli
0Smax

li
; i�1; . . . ; nl (6)

where nl is the number of transmission lines.

2.3. Problem formulation

Aggregating the objectives and constraints, the pro-

blem can be mathematically formulated as a nonlinear

constrained multiobjective optimization problem as

follows.

Minimize
PG

[F (PG);E(PG)] (7)

subject to:

g(PG)�0 (8)

h(PG)00 (9)

where g and h are the equality and inequality con-
straints respectively.

3. Principles of multiobjective optimization

Many real-world problems involve simultaneous op-

timization of several objective functions. Generally,

these functions are noncommensurable and often com-

peting and conflicting objectives. Multiobjective opti-

mization with such conflicting objective functions gives

rise to a set of optimal solutions, instead of one optimal

solution. The reason for the optimality of many solu-
tions is that no one can be considered to be better than

any other with respect to all objective functions. These

optimal solutions are known as Pareto-optimal solu-

tions.

A general multiobjective optimization problem con-

sists of a number of objectives to be optimized

simultaneously and is associated with a number of

equality and inequality constraints. It can be formulated
as follows:

Minimize
x

fi(x) i�1; . . . ;Nobj (10)

Subject to:
gj(x)�0 j�1; . . . ;M

hk(x)00 k�1; . . . ;K

�
(11)
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where fi is the ith objective functions, x is a decision

vector that represents a solution, Nobj is the number of

objectives. M and K are the numbers of equality and

inequality constraints respectively.
For a multiobjective optimization problem, any two

solutions x1 and x2 can have one of two possibilities: one

dominates the other or none dominates the other. In a

minimization problem, without loss of generality, a

solution x1 dominates x2 if the following two conditions

are satisfied:

1: � i � f1; 2; . . . ;Nobjg:fi(x
1)0fi(x

2) (12)

2: � j � f1; 2; . . . ;Nobjg:fj(x
1)Bfj(x

2) (13)

If any of the above condition is violated, the solution

x1 does not dominate the solution x2. If x1 dominates

the solution x2, x1 is called the nondominated solution.

The solutions that are nondominated within the entire

search space are denoted as Pareto-optimal and con-

stitute the Pareto-optimal set or Pareto-optimal front .

4. The proposed approach

4.1. Overview

Recently, the studies on evolutionary algorithms have

shown that these algorithms can be efficiently used to

eliminate most of the difficulties of classical methods

which can be summarized as:

. An algorithm has to be applied many times to find

multiple Pareto-optimal solutions.

. Most algorithms demand some knowledge about the

problem being solved.

. Some algorithms are sensitive to the shape of the
Pareto-optimal front.

. The spread of Pareto-optimal solutions depends on

efficiency of the single objective optimizer.

In general, the goal of a multiobjective optimization

algorithm is not only guide the search towards the

Pareto-optimal front but also maintain population

diversity in the set of the nondominated solutions.

Unfortunately, a simple GA tends to converge towards

a single solution due to selection pressure, selection
noise, and operator disruption [23].

4.2. Nondominated sorting genetic algorithm

Srinivas and Deb [24] developed NSGA in which a

ranking selection method is used to emphasize current

nondominated solutions and a niching method is used to
maintain diversity in the population. The algorithm

includes two main steps: fitness assignment and fitness

sharing.

4.2.1. Fitness assignment

The basic idea of this approach is to find a set of

solutions in the population that are nondominated by

the rest of the population. Consider a set of N

population members, each having Nobj objective func-

tion values, the following procedure is used to find the

nondominated set of solutions:

Step 1: Initiate the individual counter i with i�/1.

Step 2: For all j�/1,. . .,N and j "/i , compare

solutions xi and xj for domination using the condi-

tions given in Eq. (12) and Eq. (13).

Step 3: If for any j , xi is dominated by xj , mark xi as

dominated.

Step 4: If all individuals in the population are
considered, Go to Step 5, else set i�/i�/ 1 and go to

Step 2.

Step 5: All solutions that are not marked dominated

are nondominated solutions.

These solutions represent the first front and are

eliminated from further contention. This process con-

tinues until the population is properly ranked.

4.2.2. Fitness sharing

The basic idea behind sharing is: the more individuals

are located in the neighborhood of a certain individual,

the more its fitness value is degraded. The neighborhood

is defined in terms of a distance measure d and specified
by the niche radius sshare. Given a set of nk solutions in

the k -th front each having a dummy fitness value fk , the

sharing procedure is performed in the following way [24]

for each solution i�/1,. . .,nk :

Step 1: Compute a normalized Euclidean distance

measure with another solution j in the k -th nondomi-

nated front, as follows:

dij �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XP

k�1

�
xi

k � x
j
k

xu
k � xl

k

�2

vuut (14)

where P is the number of variables in the problem. The

parameters xk
u and xk

l are the upper and lower bounds of

variable xk .
Step 2: This distance dij is compared with a pre-

specified parameter sshare and the following sharing

function value is computed:

Sh(dij)�
1�

�
dij

sshare

�2

; if dij 0sshare

0; otherwise

8<
: (15)

Step 3: Increment j . If j 0/nk , go to Step 1 else

calculate niche count for i -th solution as follows:

mi�
Xnk

j�1

Sh(dij) (16)
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Step 4: Degrade the dummy fitness fk of i-th solution

in the k -th nondomination front to calculate the shared

fitness, fi�, as follows:

f +
i �

fk

mi

(17)

This procedure is continued for all i�/1,. . .,nk and a

corresponding fi� is found. Thereafter, the smallest value

fk
min of all fi� in the k -th nondominated front is found for

further processing. The dummy fitness of the next

nondominated front is assigned to be fk�1�/fk
min�/ok ,

where ok is a small positive number.

4.3. Reducing pareto set by clustering

In some problems, the Pareto-optimal set can be

extremely large or even contain an infinite number of

solutions. In this case, reducing the set of nondominated

solutions without destroying the characteristics of the
trade-off front is desirable from the decision maker’s

point of view. An average linkage based hierarchical

clustering algorithm [25] is employed to reduce the

Pareto set to manageable size. It works iteratively by

joining the adjacent clusters until the required number

of groups is obtained. It can be described as: given a set

P which its size exceeds the maximum allowable size N ,

it is required to form a subset P* with the size N . The
algorithm is illustrated in the following steps.

Step 1: Initialize cluster set C ; each individual i � /P

constitutes a distinct cluster.

Step 2: If number of clusters 0/N , then go to Step 5,

else go to Step 3.

Step 3: Calculate the distance of all possible pairs of

clusters. The distance dc of two clusters c1 and c2 � /C is

given as the average distance between pairs of indivi-
duals across the two clusters

dc�
1

n1 � n2

X
i1 � c1; i2 � c2

d(i1; i2) (18)

where n1 and n2 are the number of individuals in the

clusters c1 and c2 respectively. The function d reflects the
distance in the objective space between individuals i1
and i2.

Step 4: Determine two clusters with minimal distance

dc . Combine these clusters into a larger one. Go to Step

2.

Step 5: Find the centroid of each cluster. Select the

nearest individual in this cluster to the centroid as a

representative individual and remove all other indivi-
duals from the cluster.

Step 6: Compute the reduced nondominated set P*

by uniting the representatives of the clusters.

4.4. Best compromise solution

Upon having the Pareto-optimal set of nondominated

solution, the proposed approach presents one solution
to the decision maker as the best compromise solution.

Due to imprecise nature of the decision maker’s judg-

ment, the i -th objective function Fi is represented by a

membership function mi defined as [8]

mi�

1 Fi5Fmin
i

Fmax
i � Fi

F max
i � F min

i

Fmin
i BFiBFmax

i

0 Fi]Fmax
i

8>><
>>:

(19)

where Fi
mix and Fi

max are the minimum and maximum

value of the i -th objective function among all nondo-

minated solutions, respectively.

For each nondominated solution k , the normalized

membership function mk is calculated as

mk�

XNobj

i�1

mk
i

XM

k�1

XNobj

i�1

mk
i

(20)

where M is the number of nondominated solutions. The

best compromise solution is the one having the max-

imum value of mk .

5. Implementation of the proposed approach

5.1. Real-coded genetic algorithm

Due to difficulties of binary representation when
dealing with continuous search space with large dimen-

sion, the proposed approach has been implemented

using real-coded genetic algorithm (RCGA) [26]. A

decision variable xi is represented by a real number

within its lower limit ai and upper limit bi , i.e. xi � /[ai ,bi ].

The RCGA crossover and mutation operators are

described as follows:

Crossover: A blend crossover operator (BLX-a ) has
been employed in this study. This operator starts by

choosing randomly a number from the interval [xi�/

a (yi�/xi), yi�/a (yi�/xi)], where xi and yi are the ith

parameter values of the parent solutions and xi B/yi . To

ensure the balance between exploitation and exploration

of the search space, a�/ 0.5 is selected. This operator can

be depicted as shown in Fig. 1.

Mutation: The nonuniform mutation operator has
been employed in this study. In this operator, the new

value xi? of the parameter xi after mutation at generation

t is given as
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x?i �
xi�D(t; bi�xi) if t�0

xi�D(t; xi�ai) if t�1

�
(21)

and;

D(t; y)�y(1�r(1�t=gmax)b ) (22)

where t is a binary random number, r is a random

number r � /[0,1], gmax is the maximum number of
generations, and b is a positive constant chosen

arbitrarily. In this study, b�/5 was selected. This

operator gives a value xi? � /[ai ,bi ] such that the prob-

ability of returning a value close to xi increases as the

algorithm advances. This makes uniform search in the

initial stages where t is small and very locally at the later

stages.

5.2. The computational flow

The computational flow of the proposed algorithm

can be described as follows. At first, the nondominated

solutions in the population are identified. These non-

dominated solutions constitute the first nondominated

front and assigned the same dummy fitness value. These

nondominated solutions are then shared with their
dummy fitness values. After sharing, these nondomi-

nated individuals are ignored temporarily to process the

rest of population members. The above procedure is

repeated to find the second level of nondominated

solutions in the population. Once they are identified, a

dummy fitness value, which is a little smaller than the

worst shared fitness value observed in solutions of first

nondominated set, is assigned. Thereafter, the sharing
procedure is performed among the solutions of second

nondomination level and shared fitness values are found

as before. This process is continued until all population

members are assigned a shared fitness value. The

population is then reproduced with the shared fitness

values.

In this study, the basic NSGA has been developed in

order to make it suitable for solving real-world non-
linear constrained optimization problems. The following

modifications have been incorporated in the basic

algorithm.

a) A procedure is imposed to check the feasibility of

the initial population individuals and the generated

children through GA operations. This ensures the

feasibility of Pareto-optimal nondominated solu-
tions.

b) A procedure for updating the Pareto-optimal set is

developed. In every generation, the nondominated

solutions in the first front are combined with the

existing Pareto-optimal set. The augmented set is

processed to extract its nondominated solutions that

represent the updated Pareto-optimal set.

c) A hierarchical clustering procedure based on the
average linkage method is incorporated to provide

the decision maker with a representative and

manageable Pareto-optimal set without destroying

the characteristics of the trade-off front.

d) A fuzzy-based mechanism is employed to extract the

best compromise solution over the trade-off curve

and assist the decision maker to adjust the genera-

tion levels efficiently.

The computational flow of the proposed NSGA

based approach is shown in Fig. 2.

5.3. Settings of the proposed approach

The techniques used in this study were developed and

implemented on 133-MHz PC using FORTRAN language.

On all optimization runs, the population size and the
maximum number of generations were selected as 200

and 500 respectively. The maximum size of the Pareto-

optimal set was chosen as 50 solutions. If the number of

the nondominated Pareto-optimal solutions exceeds this

bound, the clustering technique is called. Crossover and

mutation probabilities were selected as 0.9 and 0.01

respectively in all optimization runs.

6. Results and discussions

In this study, the standard IEEE 30-bus 6-generator

test system is considered to investigate the effectiveness

of the proposed approach. The single-line diagram of

this system is shown in Fig. 3 and the detailed data are
given in Refs. [6,11]. The values of fuel cost and

emission coefficients are given in Table 1. Two different

cases have been considered as follows.

Case (a): For comparison purposes with the reported

results, the system is considered as lossless and the

security constrain is released. At first, fuel cost and

emission are optimized individually to get the extreme

points of the trade-off surface. Convergence of fuel cost
and emission objective functions are shown in Fig. 4.

The best results of cost and emission when optimized

individually are given in Table 2.

Fig. 1. Blend crossover operator (BLX-a ).
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For completeness, the RCGA was applied to find the

Pareto-optimal solutions where the problem was treated

as a single objective optimization problem by linear

combination of cost and emission objectives as follows:

Minimize
PG

wF (PG)�(1�w)lE(PG) (23)

where l is a scaling factor which was selected as 3000 in

this study and w is a weighting factor. To generate 50
nondominated solutions, the algorithm was applied 50

times with varying w as a random number w�/rand[0.1].

The Pareto-optimal front of RCGA is shown in Fig. 5.

Applying the proposed NSGA based approach; the

distribution of the nondominated solutions in Pareto-

optimal front is shown in Fig. 6. It is clear that the

solutions are diverse and well-distributed over the trade-
off curve.

Comparing the results shown in Fig. 5 and Fig. 6, it

can be concluded that:-(a) the 50 solutions shown in Fig.

6 that present the results of the proposed technique have

been obtained in a single run while the solutions shown

in Fig. 5 have been obtained in 50 separate runs; (b) the

solutions of the proposed approach shown in Fig. 6 have

better diversity characteristics and well-distributed over
the trade-off surface; (c) there is no guarantee that the

single objective optimizer will span over the entire trade-

off surface while the proposed approach has an impeded

diversity-preserving mechanism through fitness sharing

procedure.

The results of the proposed approach were compared

to those reported using linear programming [6] and

multiobjective stochastic search technique [18]. The
comparison results are given in Table 3 and Table 4. It

can be seen form Table 3 that the savings with the

proposed approach in the fuel cost is about 5 to 6 $/h

and the emission is less as well. This demonstrates the

potential of the proposed approach as the obtained

solution covers and dominates the other solutions given

in Refs. [6] and [18]. It can be concluded that the

proposed approach is capable of exploring more effi-
cient and noninferior solutions of multiobjective opti-

mization problems.

Case (b): In this case, the transmission power loss

has been taken into account. Convergence of fuel cost

and emission objective functions when optimized in-

dividually are shown in Fig. 7. The best results of cost

and emission when optimized individually are given in

Table 2. The values of the best cost and the best
emission objectives with the proposed approach are

given in Table 3 and Table 4. The distribution of the

nondominated solutions of RCGA when applied for 50

times is shown in Fig. 8. The distribution of the

nondominated solutions of the proposed approach is

shown in Fig. 9. It can be seen that the proposed

approach preserves the diversity of the nondominated

solutions over the trade-off front.
The membership functions given in Eq. (19) and Eq.

(20) are used to evaluate each member of the Pareto-

optimal set. Then, the best compromise solution that has

the maximum value of membership function can be

extracted. This procedure is applied for both cases and

the best compromise solutions are given in Table 5.

Comparing the results of single objective optimization

given in Table 2 with the results of multiobjective
optimization given in Table 3 and Table 4, it is clear

that the results in both cases are almost identical as

given in Table 6. This demonstrates that the search of

the proposed approach span over the entire trade-off

Fig. 2. Computational flow of the proposed approach.
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surface. In addition, the close agreement of the results

shows clearly the capability of the proposed approach to

handle multiobjective optimization problems as the best

solution of each objective along with a manageable set

of nondominated solutions can be obtained in one single

run.

7. Conclusion

In this paper, a novel approach based on the NSGA

has been presented and applied to environmental/

economic power dispatch optimization problem. The

problem has been formulated as multiobjective optimi-

Fig. 3. Single-line diagram of IEEE 30-bus test system.

Table 1

Generator cost and emission coefficients

G1 G2 G3 G4 G5 G6

Cost a 10 10 20 10 20 10

b 200 150 180 100 180 150

c 100 120 40 60 40 100

Emission a 4.091 2.543 4.258 5.426 4.258 6.131

b �/5.554 �/6.047 �/5.094 �/3.550 �/5.094 �/5.555

g 6.490 5.638 4.586 3.380 4.586 5.151

z 2.0E�/4 5.0E�/4 1.0E�/6 2.0E�/3 1.0E�/6 1.0E�/5

l 2.857 3.333 8.000 2.000 8.000 6.667
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Fig. 4. Convergence of cost and emission objectives of case (a).

Table 2

The best solutions for cost and emission optimized individually

Case (a) Case (b)

Best cost Best emission Best cost Best emission

PG
1

0.10954 0.40584 0.11516 0.41007

PG
2

0.29967 0.45915 0.30552 0.46308

PG
3

0.52447 0.53797 0.59724 0.54349

PG
4

1.01601 0.38300 0.98088 0.38950

PG
5

0.52469 0.53791 0.51421 0.54386

PG
6

0.35963 0.51012 0.35417 0.51501

Fuel cost ($/h) 600.114 638.260 607.777 645.222

Emission (ton/

h)

0.22214 0.19420 0.21985 0.19418

Fig. 5. Pareto-optimal front of objective aggregation in case (a).

Fig. 6. Pareto-optimal front of the proposed approach in case (a).

Table 3

Test results of best fuel cost of the proposed approach

LP [6] MOSST [18] Proposed

Case (a) Case (b)

PG
1

0.1500 0.1125 0.1567 0.1168

PG
2

0.3000 0.3020 0.2870 0.3165

PG
3

0.5500 0.5311 0.4671 0.5441

PG
4

1.0500 1.0208 1.0467 0.9447

PG
5

0.4600 0.5311 0.5037 0.5498

PG
6

0.3500 0.3625 0.3729 0.3964

Best cost 606.314 605.889 600.572 608.245

Corresp. emission 0.22330 0.22220 0.22282 0.21664
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zation problem with competing fuel cost and environ-

mental impact objectives. A diversity-preserving me-

chanism is developed to find widely different Pareto-

optimal solutions. A hierarchical clustering technique is

implemented to provide the operator with a representa-

tive and manageable Pareto-optimal set without de-

stroying the characteristics of the trade-off front.

Moreover, a fuzzy-based mechanism is employed to

extract the best compromise solution over the trade-off

curve. The results show that the proposed approach is

efficient for solving multiobjective optimization where

multiple Pareto-optimal solutions can be found in one

simulation run. In addition, the nondominated solutions

in the obtained Pareto-optimal set are well-distributed

and have satisfactory diversity characteristics. The most

Table 4

Test results of best emission of the proposed approach

LP [6] MOSST [18] Proposed

Case (a) Case (b)

PG
1

0.400 0.4095 0.4394 0.4113

PG
2

0.4500 0.4626 0.4511 0.4591

PG
3

0.5500 0.5426 0.5105 0.5117

PG
4

0.4000 0.3884 0.3871 0.3724

PG
5

0.5500 0.5427 0.5553 0.5810

PG
6

0.5000 0.5142 0.4905 0.5304

Best emission 0.19424 0.19418 0.19436 0.19432

Corresp. cost 639.600 644.112 639.231 647.251

Fig. 7. Convergence of cost and emission objectives of case (b).

Fig. 8. Pareto-optimal front of objective aggregation in case (b).

Fig. 9. Pareto-optimal front of the proposed approach in case (b).

Table 5

Best compromise solutions of the proposed approach

Case (a) Case (b)

PG
1

0.2571 0.2699

PG
2

0.3774 0.3885

PG
3

0.5381 0.5645

PG
4

0.6872 0.6570

PG
5

0.5404 0.5441

PG
6

0.4337 0.4398

Cost 610.067 618.686

Emission 0.20060 0.19940

Table 6

The best solutions for cost and emission

Case (a) Case (b)

Cost Emission Cost Emission

Single objective 600.114 0.19420 607.777 0.19418

Multiobjective 600.572 0.19436 608.245 0.19432
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important aspect of the proposed approach is that any

number of objectives can be considered.
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