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Optimal Design of Power System Stabilizers
Using Evolutionary Programming

M. A. Abido and Y. L. Abdel-Magid, Senior Member, IEEE

Abstract—The optimal design of power system stabilizers (PSSs)
using evolutionary programming (EP) optimization technique is
presented in this paper. The proposed approach employs EP to
search for optimal settings of PSS parameters that shift the system
eigenvalues associated with the electromechanical modes to the left
in the -plane. Incorporation of EP algorithm in the design of PSSs
significantly reduces the computational burden. The performance
of the proposed PSSs under different disturbances, loading condi-
tions, and system configurations is investigated for a multimachine
power system. The eigenvalue analysis and the nonlinear simula-
tion results show the effectiveness and robustness of the proposed
PSSs to damp out the local as well as the interarea modes of oscilla-
tions and work effectively over a wide range of loading conditions
and system configurations.

Index Terms—Dynamic stability, evolutionary programming,
PSS design.

NOMENCLATURE

first derivative w.r.t. time d/dt;
torque angle;

, speed and speed deviation, respectively;

, inertia constant and damping coefficient, respec-
tively;
synchronous speed;
internal voltage behind ;
equivalent excitation voltage;

, stator currents in and axis circuits, respectively;
, stator voltages in and axis circuits, respectively;
, terminal and reference voltages, respectively;

synchronous reactance in-axis;
-axis transient reactance;

time constant of excitation circuit;
, mechanical torque and electric torque, respectively;

, regulator gain and time constant, respectively;

PSS control signal.
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I. INTRODUCTION

W ITH the increased loading of long transmission lines,
transient and dynamic stability after a major fault are

increasingly important, and they can become a transmission
power-limiting factor. Since the development of intercon-
nection of large electric power systems, there have been
spontaneous system oscillations at very low frequencies in
order of 0.2 to 3.0 Hz. Once started, they would continue for
a long period of time. In some cases, they continue to grow,
causing system separation if no adequate damping is available.
Moreover, low-frequency oscillations present limitations on
the power-transfer capability. To enhance system damping, the
generators are equipped with power system stabilizers (PSSs)
that provide supplementary feedback stabilizing signals in the
excitation systems. PSSs augment the power system stability
limit and extend the power-transfer capability by enhancing the
system damping of low-frequency oscillations associated with
the electromechanical modes [1], [2].

DeMello and Concordia [2] presented the concepts of syn-
chronous machine stability as affected by excitation control.
They established an understanding of the stabilizing require-
ments for static excitation systems. In recent years, several ap-
proaches based on modern control theory have been applied to
the PSS design problem. These include optimal control, adap-
tive control, variable structure control, and intelligent control
[3]–[6].

Despite the potential of modern control techniques with dif-
ferent structures, power system utilities still prefer the conven-
tional lead-lag power system stabilizer (CPSS) structure [7]–[9].
The reasons behind that might be the ease of online tuning and
the lack of assurance of the stability related to some adaptive or
variable structure techniques.

Kundur et al. [9] have presented a comprehensive analysis
of the effects of the different CPSS parameters on the overall
dynamic performance of the power system. It is shown that the
appropriate selection of CPSS parameters results in satisfactory
performance during system upsets.

A lot of different techniques have been reported in the liter-
ature pertaining to coordinated design problem of CPSS. Dif-
ferent techniques of sequential design of PSSs are presented
[10]–[12] to damp out the electromechanical modes one at a
time. Generally, the dynamic interaction effects among various
modes of the machines are found to have significant influence
on the stabilizer settings. Therefore, considering the application
of stabilizers to one machine at a time may not finally lead to an
overall optimal choice of PSS parameters. Moreover, the stabi-
lizers designed to damp one mode can produce adverse effects
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in other modes. In addition, the optimal sequence of design is a
very involved question.

The sequential design of PSSs is avoided in [13]–[16], where
various methods for simultaneous tuning of PSSs in multima-
chine power systems are proposed. Unfortunately, the proposed
techniques are iterative and require heavy computational burden
due to the system reduction procedure. This results in time-con-
suming computer codes. In addition, the initialization step of
these algorithms is crucial and affects the final dynamic re-
sponse of the controlled system. Hence, different designs as-
signing the same set of eigenvalues were simply obtained by
using different initializations. Therefore, a final selection crite-
rion is required to avoid long runs of validation tests on the non-
linear model. Other techniques, such as mathematical program-
ming [17], have been applied to the problem of tuning PSSs.
The problem has been formulated as a quadratic and linear pro-
gramming problem. However, this formulation is carried out at
the expense of some conservativeness, and the number of con-
straints becomes unduly large. A gradient procedure for opti-
mization of PSS parameters is presented in [18]. The optimiza-
tion process requires computations of sensitivity factors and
eigenvectors at each iteration. This gives rise to heavy compu-
tational burden and slow convergence. In addition, the search
process is susceptible to be trapped in local minima, and the so-
lution obtained will not be optimal. Unfortunately, the problem
of the PSS design is amultimodaloptimization problem (i.e.,
there exists more than one local optimum). Hence, local opti-
mization techniques, which are well elaborated upon, are not
suitable for such a problem. Moreover, there is no local crite-
rion to decide whether a local solution is also the global solution.
Therefore, conventional optimization methods that make use of
derivatives and gradients are, in general, not able to locate or
identify the global optimum, but for real-world applications, one
is often content with a “good” solution, even if it is not the best.
Consequently, heuristic methods are widely used for global op-
timization problems. In this paper, evolutionary programming
(EP), as a promising heuristic algorithm, is proposed for a PSS
design problem.

Recently, evolutionary algorithms such as genetic algorithms
(GAs) and EP have received much attention for global opti-
mization problems [19], [20]. These evolutionary algorithms are
heuristic population-based search procedures that incorporate
random variation and selection. Even though several successful
applications have been reported, recent research has identified
some inefficiency in GA performance [19]. This degradation in
efficiency is apparent in applications with highlyepistaticob-
jective functions (i.e., where the parameters being optimized are
highly correlated). In addition, the encoding and decoding pro-
cesses of each solution use a lot of computing time. The new
generation of GA after mutation and crossover may lose advan-
tages obtained in the last generation. On the other hand, the
competition in the combined old generation and mutated old
generation avoids such a problem in an EP algorithm. On the
other hand, EP has been shown to be more robust toepistatic
objective functions and is more efficient than GA on many func-
tion optimization problems [19]. In addition, the convergence
theory for EP is well established, and EP has been proven to

Fig. 1. IEEE-type-ST1 excitation system with conventional lead-lag PSS.

asymptotically converge to the global optimum with probability
one under elitist selection [19]. Another strong feature of the
EP algorithm is that a complicated mathematical model is not
required, and the problem constraints can be easily incorpo-
rated [20]. In power systems, EP has been applied to a number
of power system optimization problems with impressive suc-
cesses [21]–[23]. However, to the best of the authors’ knowl-
edge, the potential of the EP algorithm to PSS design has yet to
be exploited.

In this paper, a novel approach to PSS design by an eigenvalue
shift technique using the EP algorithm is proposed. The problem
of PSS design is formulated as an optimization problem, and the
EP algorithm is employed to solve this optimization problem
with the aim of getting optimal settings of the PSS parame-
ters. The proposed design approach has been applied to the
New England power system. The eigenvalue analysis and the
nonlinear simulation results have been carried out to assess the
effectiveness of the proposed PSSs under different disturbances,
loading conditions, and system configurations.

II. PROBLEM STATEMENT

A. Power System Model

A power system can be modeled by a set of nonlinear differ-
ential equations as

(1)

where is the vector of the state variables, andis the vector
of input variables. In this study, , and
is the PSS output signals. The nonlinear model is given in the
Appendix.

In the design of PSSs, the linearized incremental models
around an equilibrium point are usually employed [1], [2].
Therefore, the state equation of a power system withma-
chines and stabilizers can be written as

(2)

where is a matrix and equals , whereas is a
matrix and equals . Both and are evaluated

at a certain operating point. is the state vector, whereas
is the input vector.
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B. PSS Structure

A widely used conventional lead-lag PSS is considered in this
study. It can be described as

(3)

where is the washout time constant, is the PSS output
signal at the th machine, and is the speed deviation of
this machine. The time constants , , and are usually
prespecified. The optimal values of the stabilizer gainand
the time constants and are to be determined. The IEEE-
type-ST1 excitation system shown in Fig. 1 is considered in this
study.

C. Objective Function

To formulate the optimization problem, an objective function
, which will be defined, is considered.

(4)

where is the real part of theth eigenvalue, and is a
chosen threshold. The value of represents the desirable level
of system damping. This level can be achieved by shifting
the dominant eigenvalues to the left of line in the
-plane. This also ensures some degree of relative stability.

The condition is imposed on the evaluation of to
consider only the unstable or poorly damped modes that mainly
belong to the electromechanical ones.

The problem constraints are the parameter bounds. Therefore,
the design problem can be formulated as the following optimiza-
tion problem:

Minimize (5)

Subject to (6)

(7)

(8)

The proposed approach employs the EP algorithm to solve
this optimization problem and search for optimal or near optimal
set of PSS parameters .

III. PROPOSEDAPPROACH

A. Overview

EP is an exploratory search and optimization procedure that
was devised on the principles of natural evolution and popula-
tion genetics. Unlike conventional optimization techniques, EP
works with a population of points that represent different po-
tential solutions, each corresponding to a sample point from the
search space. For each generation, all of the population points
are evaluated based on a certain objective function. The fittest
points have more chances of evolving to the next generation.
The advantages of EP over other traditional optimization tech-
niques can be summarized as follows.

• EP searches the problem space using a population of trials
representing possible solutions to the problem and not a
single point, (i.e., EP has implicit parallelism). This prop-
erty ensures that EP is less susceptible to getting trapped

on local minima, and therefore, EP can reach to a global
or near-global optimal solution.

• EP uses payoff (performance index or objective function)
information to guide the search in the problem space.
Therefore, EP can easily deal with nonsmooth, noncon-
tinuous, and nondifferentiable objective functions that
are the real-life optimization problems. Additionally, this
property relieves EP of assumptions and approximations,
which are often required by traditional optimization
methods for many practical optimization problems.

• EP uses probabilistic transition rules to make decisions:
not deterministic rules. Hence, EP is a kind of stochastic
optimization algorithm that can search a complicated and
uncertain area to find the global optimum. This makes EP
more flexible and robust than conventional methods.

Typically, the EP starts with little or no knowledge of the cor-
rect solution, depending entirely on responses from interacting
environment and their evolution operators to arrive at optimal
or near optimal solutions.

B. EP Algorithm

In the EP algorithm, the population has candidate solu-
tions. Each candidate solution is an-dimensional real-valued
vector, where is the number of optimized parameters. The EP
algorithm can be described in the following steps.

• Step 1 (Initialization): Set the generation counter ,
and generate randomlytrial solutions .
The th trial solution can be written as ,
where the th optimized parameter is generated by ran-
domly selecting a value with uniform probability over its
search space . These initial trial solutions con-
stitute the parent population at the initial generation .
Each individual in the initial population is evaluated using
the objective function . Search for the minimum value of
the objective function . Set the solution associated with

as the best solution , with an objective function of
.

• Step 2 (Mutation): Each parent produces one offspring
as follows.

a) Perturb each optimized parameterby a Gaussian
random variable . The standard deviation
specifies the range of the optimized parameter pertur-
bation in the offspring. is given according to the
following equation:

(9)

where is a scaling factor, and is the objective
function of the trial solution .

b) Using the perturbations described, the offspring
can be determined as

(10)
If any optimized parameter violates its specified range,
its value will be set at the appropriate limit. The gen-
erated offsprings along with the parents constitute the
current population with individuals.
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Fig. 2. Single-line diagram for a New England system.

• Step 3 (Statistics): The objective functions of the offsprings
are evaluated. The minimum objective function , the
maximum objective function , and the average objec-
tive function of all individuals are calculated.

• Step 4 (Updating the Best Solution): If , go to
Step 5, or else, update the best solution . Set

, and go to Step 5.
• Step 5 (Tournament): Each member in the population

is compared with opponents that are selected at random
from the population . A weight value of
each individual is calculated according to the following
competition rule:

(11)

and

if
otherwise

(12)

where is a uniform random number ranging over , and
is a randomly selected individual from the current popu-

lation. After getting the competition weights of all indi-
viduals, these individuals are ranked in a descending order,
based on their weights.

• Step 6 (Selection): The first individuals with higher
weights are selected along with their objective functions
to represent the parents of the next generation. Set the
generation counter .

• Step 7 (Stopping Criteria): These are the conditions under
which the search process will terminate. In this study, the

search will terminate if one of the following criteria is satis-
fied.

a) The number of generations since the last change of the
best solution is greater than a prespecified number.

b) The number of generations reaches the maximum al-
lowable number.

c) The ratio is very close to 1. If one of these
criteria is satisfied then stop, else, go back to Step 2.

C. Application of EP to PSS Design

The EP algorithm described before has been applied to search
for optimal or near optimal settings of the PSS optimized param-
eters. In our implementation, the search will terminate if the fol-
lowing occur.

1) The best solution does not change for more than 20
generations.

2) The number of generations reaches 100.
3) The ratio .

One more stopping criterion has been implemented in this study
since the search will terminate if the value of the objective func-
tion reacheszero(i.e., all of the dominant eigenvalues are shifted
to the left of line).

IV. RESULTS AND DISCUSSIONS

A. Test System

In this study, the ten-machine, 39-bus New England power
system shown in Fig. 2 is considered. Each machine has been
represented by a fourth-order nonlinear model. Generator
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TABLE I
OPTIMAL VALUES OF THEPROPOSEDPSS PARAMETERS

Fig. 3. Objective function variations.

is an equivalent power source representing parts of the U.S.-
Canadian interconnection system. Details of the system data are
given in [24]. The number and location of PSSs can be investi-
gated using the participation factor method [25] and the sensi-
tivity of the PSS effect method [26]; see [6]. However, for illus-
tration and comparison purposes, we assume that all generators
except are equipped with PSSs.

B. PSS Design

In this example, the optimized parameters are, , and
, (i.e., the number of optimized parameters

is 27). , , and are set to be 5, 0.05, and 0.05 s, respec-
tively. Typical bounds of the optimized parameters are –
for and – for and [27]. Here, is chosen
to be 1.0. The EP algorithm has been applied to search for
settings of these parameters in order to shift the eigenvalues of
electromechanical modes to the left of the line in the
-plane. The final values of the optimized parameters are given

in Table I. The convergence rate of the objective functionwith
the number of generations is shown in Fig. 3.

C. Simulation Results

To demonstrate the effectiveness of the proposed PSSs under
severe conditions and critical line outages, two different op-
erating conditions in addition to the base case are considered.

TABLE II
EIGENVALUES WITHOUT PSSS

TABLE III
EIGENVALUES WITH THE PROPOSEDPSSS

These conditions are extremely hard from the stability point of
view [28]. They can be described as

1) base case;
2) case 1, outage of line 21–22;
3) case 2, outage of line 1–38.
The electromechanical modes without PSSs for the three

cases are given in Table II. It is clear that these modes are poorly
damped, and some of them are unstable. The electromechanical
modes with the proposed PSSs are given in Table III. It can be
seen that the electromechanical modes of the base case with
the proposed PSSs have been shifted to the left of
line. It is obvious that the system damping greatly improved
and enhanced all cases.

A six-cycle three-phase fault disturbance at bus 29 at the end
of line 26–29 is considered for the nonlinear time simulations.
The performance of the proposed PSSs is compared with that
of conventional PSSs with the gradient-based settings given in
[18]. The speed deviation of and , along with their stabi-
lizing signals, are shown in Figs. 4–6 for the base case, case 1,
and case 2, respectively. It is clear that the system performance
with the proposed PSSs is much better and that the oscillations
are damped out much faster. It is worth mentioning that the con-
trol effort is limited to 0.2 pu to avoid unrealistic values. Al-
though the robustness issue has been considered in the design
process of conventional PSSs of [18], the proposed PSS is more
robust, as shown in results of cases 1 and 2. This reflects the po-
tential of the proposed approach to search for the global rather
than the local optimum. In addition, the proposed PSSs are quite
efficient to damp out the local modes, as well as the interarea
modes of oscillations. This illustrates the superiority of the pro-
posed PSS design approach to get an optimal or near-optimal
set of PSS parameters.
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Fig. 4. System responses with the base case.

Due to space limitations and to offer clear perceptiveness
about the system responses, two performance indices that re-
flect the settling time and overshoots are introduced. They are
defined as

(13)

(14)

Fig. 5. System responses with case 1.

where is the number of machines, and is the simulation
time. It is worth mentioning that the lower the value of these in-
dices is, the better the system response in terms of the settling
time and overshoots. The values of these indices with the dif-
ferent cases are given in Table IV. It is clear that the values of
these indices with the proposed PSSs are much smaller com-
pared with the corresponding values, with the PSSs given in
[18]. This demonstrates that the settling time and the speed devi-
ations of all units are greatly reduced by applying the proposed
PSSs.
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Fig. 6. System responses with case 2.

TABLE IV
VALUES OF THEPERFORMANCEINDICES

V. CONCLUSIONS

In this study, the evolutionary programming algorithm is
proposed for the PSS design problem. The proposed design

approach employs EP to search for optimal settings of conven-
tional lead-lag PSS parameters. The proposed approach has
been applied to a single machine infinite bus system and a mul-
timachine power system with different disturbances, loading
conditions, and system configurations. The main features of
the proposed approach can be summarized as follows.

1) The proposed PSSs are of decentralized nature since only
local measurements are employed as the stabilizer inputs.
This makes the proposed PSS easy to tune and install.

2) All PSSs are designed simultaneously, taking into consid-
eration the interaction among them.

3) Since eigenvector calculations and sensitivity analysis are
not required to evaluate the proposed objective function,
heavy computations of the design process are avoided.

4) The eigenvalue analysis reveals the effectiveness of the
proposed PSSs to damp out local as well as interarea
modes of oscillations.

5) The nonlinear time simulation results confirm that the
proposed PSSs can work effectively over a wide range of
loading conditions and system configurations.

APPENDIX

TH MACHINE MODEL

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)
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