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Abstract

This paper presents an efficient and reliable evolutionary-based approach to solve the optimal power flow (OPF) problem. The proposed
approach employs particle swarm optimization (PSO) algorithm for optimal settings of OPF problem control variables. Incorporation of PSO
as a derivative-free optimization technique in solving OPF problem significantly relieves the assumptions imposed on the optimized
objective functions. The proposed approach has been examined and tested on the standard IEEE 30-bus test system with different objectives
that reflect fuel cost minimization, voltage profile improvement, and voltage stability enhancement. The proposed approach results have been
compared to those that reported in the literature recently. The results are promising and show the effectiveness and robustness of the proposed

approach. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the past two decades, the problem of optimal power
flow (OPF) has received much attention. It is of current
interest of many utilities and it has been marked as one of
the most operational needs. The OPF problem solution aims
to optimize a selected objective function such as fuel cost
via optimal adjustment of the power system control
variables, while at the same time satisfying various equality
and inequality constraints. The equality constraints are the
power flow equations, while the inequality constraints are
the limits on control variables and the operating limits of
power system dependent variables. The problem control
variables include the generator real powers, the generator
bus voltages, the transformer tap settings, and the reactive
power of switchable VAR sources, while the problem
dependent variables include the load bus voltages, the
generator reactive powers, and the line flows. Generally,
the OPF problem is a large-scale highly constrained
nonlinear nonconvex optimization problem.

A wide variety of optimization techniques have been
applied in solving the OPF problems [1-19] such as
nonlinear programming [1-6], quadratic programming
[7,8], linear programming [9-11], Newton-based techni-
ques [12,13], sequential unconstrained minimization
technique [14], and interior point methods [15,16].
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Generally, nonlinear programming based procedures have
many drawbacks such as insecure convergence properties
and algorithmic complexity. Quadratic programming based
techniques have some disadvantages associated with the
piecewise quadratic cost approximation. Newton-based
techniques have a drawback of the convergence character-
istics that are sensitive to the initial conditions and they may
even fail to converge due to the inappropriate initial condi-
tions. Sequential unconstrained minimization techniques are
known to exhibit numerical difficulties when the penalty
factors become extremely large. Although linear program-
ming methods are fast and reliable they have some
disadvantages associated with the piecewise linear cost
approximation. Interior point methods have been reported
as computationally efficient, however, if the step size is not
chosen properly, the sub-linear problem may have a solution
that is infeasible in the original nonlinear domain [15]. In
addition, interior point methods, in general, suffer from bad
initial, termination, and optimality criteria and, in most
cases, are unable to solve nonlinear and quadratic objective
functions [16]. For more discussions on these techniques,
we direct the reader to consult the comprehensive survey
presented in Ref. [17].

Generally, most of these approaches apply sensitivity
analysis and gradient-based optimization algorithms by
linearizing the objective function and the system constraints
around an operating point. Unfortunately, the problem of the
OPF is a highly nonlinear and a multimodal optimization
problem, i.e. there exist more than one local optimum.
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Hence, local optimization techniques, which are well
elaborated, are not suitable for such a problem. Moreover,
there is no local criterion to decide whether a local solution
is also the global solution. Therefore, conventional optimi-
zation methods that make use of derivatives and gradients
are, in general, not able to locate or identify the global
optimum. On the other hand, many mathematical assump-
tions such as convex, analytic, and differential objective
functions have to be given to simplify the problem.
However, the OPF problem is an optimization problem
with, in general, nonconvex, nonsmooth, and nondifferenti-
able objective functions. These properties have become
more evident and dominant if the effects of the valve-
point loading of thermal generators and the nonlinear
behavior of electronic-based devices such as FACTS are
taking into consideration. Hence, it becomes essential to
develop optimization techniques that are efficient to
overcome these drawbacks and handle such difficulties.

Heuristic algorithms such as genetic algorithms (GA)
[18]and evolutionary programming [19] have been recently
proposed for solving the OPF problem. The results reported
were promising and encouraging for further research in this
direction. Unfortunately, recent research has identified some
deficiencies in GA performance [20]. This degradation in
efficiency is apparent in applications with highly epistatic
objective functions, i.e. where the parameters being
optimized are highly correlated. In addition, the premature
convergence of GA degrades its performance and reduces
its search capability.

Recently, a new evolutionary computation technique,
called particle swarm optimization (PSO), has been
proposed and introduced [21-24]. This technique combines
social psychology principles in socio-cognition human
agents and evolutionary computations. PSO has been
motivated by the behavior of organisms such as fish school-
ing and bird flocking. Generally, PSO is characterized as
simple in concept, easy to implement, and computationally
efficient. Unlike the other heuristic techniques, PSO has a
flexible and well-balanced mechanism to enhance and adapt
to the global and local exploration abilities.

In this paper, a novel PSO based approach is proposed to
solve the OPF problem. The problem is formulated as an
optimization problem with mild constraints. In this study,
different objective function has been considered to
minimize the fuel cost, to improve the voltage profile, and
to enhance power system voltage stability. The proposed
approach has been examined and tested on IEEE 30-bus
standard system. The potential and effectiveness of the
proposed approach are demonstrated. Additionally, the
results are compared to those reported in the literature.

2. Problem formulation

The OPF problem is to optimize the steady state perfor-
mance of a power system in terms of an objective function

while satisfying several equality and inequality constraints.
Mathematically, the OPF problem can be formulated as
follows.

Min J(x, u) (1)
Subject to : g(x,u) =0 2)
hx,u) =0 3)

where X is the vector of dependent variables consisting of
slack bus power Pg , load bus voltages Vi, generator
reactive power outputs Qg, and transmission line loadings
Si. Hence, x can be expressed as

x! = (PG, Vi, Vi 06, Qe Sty 1, ] )

where NL, NG, and nl are number of load buses, number of
generators, and number of transmission lines, respectively.

u is the vector of independent variables consisting of
generator voltages Vg, generator real power outputs Pg
except at the slack bus Pg,, transformer tap settings T,
and shunt VAR compensations Q.. Hence, u can be
expressed as

u' = Vg, Vo Po, Pay T Trs Qer+ Qe ] )

where NT and NC are the number of the regulating trans-
formers and shunt compensators, respectively. J is the
objective function to be minimized. g is the equality
constraints represent typical load flow equations. 4 is the
system operating constraints that include

(a) Generation constraints: Generator voltages, real
power outputs, and reactive power outputs are restricted
by their lower and upper limits as follows:

VEr = Vg, = V&, i=1,..,NG (©6)
P = P, = PE™, i=1,..,NG 7
08" = Qg, = 08, i=1,..,NG ®)

(b) Transformer constraints: Transformer tap settings are
bounded as follows:

TN < T, < 7™ j=1,..,NT ©)

(c) Shunt VAR constraints: Shunt VAR compensations
are restricted by their limits as follows:

mt < Qg = 0, i=1,..,NC (10)

(d) Security constraints: These include the constraints of
voltages at load buses and transmission line loadings as
follows:

Vit =v, = V™, i=1,..,NL (11)
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S, =SM* i=1,..,nl (12)

It is worth mentioning that the control variables are self-
constrained. The hard inequalities of Pg,, V1, Og, and S can
be incorporated in the objective function as quadratic
penalty terms. Therefore, the objective function can be
augmented as follows:

NL
Jag =+ Mp(Pg, = PENY + Ay D (Vy, = Vi™)?
i=1

nl

OGN + As D (S, = S (13)

i=1

NG
+ AQ Z (QGi -
=

where Ap, Ay, Ag, and Ag are penalty factors and x'™ is the
limit value of the dependent variable x given as

i xmax; X > xmax
x™m= (14)

XM << X

3. Particle swarm optimization
3.1. Overview

Like evolutionary algorithms, PSO technique conducts
search using a population of particles, corresponding to
individuals. Each particle represents a candidate solution
to the problem at hand. In a PSO system, particles change
their positions by flying around in a multi-dimensional
search space until a relatively unchanging position has
been encountered, or until computational limitations are
exceeded. In social science context, a PSO system combines
a social-only model and a cognition-only model [21]. The
social-only component suggests that individuals ignore their
own experience and adjust their behavior according to the
successful beliefs of individuals in the neighborhood. On the
other hand, the cognition-only component treats individuals
as isolated beings. A particle changes its position using
these models.

3.2. PSO algorithm

The basic elements of PSO technique are briefly stated
and defined as follows:

e Particle, X(¢) : It is a candidate solution represented by
an m-dimensional vector, where m is the number of opti-
mized parameters. At time 7, the jth particle X;(¢) can be
described as X;(r) = [x;(?), ..., X; ,,(1)], where xs are the
optimized parameters and x k(t) is the position of the jth
particle with respect to the kth dimension, i.e. the value of
the kth optimized parameter in the jth candidate solution.

e Population, pop(?),: It is a set of n particles at time ¢, i.e.
pop(t) = [X, (1), ... X,(0]".

e Swarm: It is an apparently disorganized population of

moving particles that tend to cluster together while
each particle seems to be moving in a random direction
[23].

e Particle velocity, V(t): It is the velocity of the moving
particles represented by an m-dimensional vector. At
time ¢, the jth particle velocity V;(¢) can be described as
Vi) = [vj1(0), ..., ()], where v;,(?) is the velocity
component of the jth particle w1th respect to the kth
dimension.

o [nertia weight, w(t): It is a control parameter that is used
to control the impact of the previous velocities on the
current velocity. Hence, it influences the trade-off
between the global and local exploration abilities of the
particles [23]. For initial stages of the search process,
large inertia weight to enhance the global exploration is
recommended while, for last stages, the inertia weight is
reduced for better local exploration.

e Individual best, X*(f) : As a particle moves through the
search space, it compares its fitness value at the current
position to the best fitness value it has ever attained at any
time up to the current time. The best position that is
associated with the best fitness encountered so far is
called the individual best, X" (¢). For each particle in the
swarm, X*(f) can be determined and updated during the
search. In a minimization problem with objective
function J, the individual best of the jth particle X]* (1) is
determined such that J (X;(t)) = J(Xj(7), =1t For
simplicity, assume that J; = J(X; (r)). For the jth particle,
individual best can be expressed as X;(t) =
(1 (D), e ] (D]

o Global best, X™(1): It is the best position among all indi-
vidual best positions achieved so far. Hence, the global
best can be determined such that J (X (t)) =J (X 1), =
1, ..., n For simplicity, assume that J** ](X**(t))

. Stopping criteria: these are the conditions under which
the search process will terminate. In this study, the search
will terminate if one of the following criteria is satisfied:
(a) the number of iterations since the last change of the
best solution is greater than a prespecified number or (b)
the number of iterations reaches the maximum allowable
number.

In this study, the basic PSO has been developed as
follows:

¢ An annealing procedure has been incorporated in order to
make uniform search in the initial stages and very local
search in the later stages. A decrement function for
decreasing the inertia weight given as w(f) =
aw(t — 1), a is a decrement constant smaller than but
close to 1, is proposed in this study.

e Feasibility checks procedure of the particle positions has
been imposed after the position updating to prevent the
particles from flying outside the feasible search space.

e The particle velocity in the kth dimension is limited by
some maximum value, vi"**. This limit enhances the local
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exploration of the problem space and it realistically simu-
lates the incremental changes of human learning [21]. To
ensure uniform velocity through all dimensions, the
maximum velocity in the kth dimension is proposed as:

— xniny/N 15)

v;cnax — (xlr(nax

where N is a chosen number of intervals.

In PSO algorithm, the population has n particles and each
particle is an m-dimensional vector, where m is the number
of optimized parameters. Incorporating the above modifica-
tions, the computational flow of PSO technique can be
described in the following steps.

Step 1 (Initialization): Set the time counter t=0 and
generate randomly n particles, {X,-(O),j =1,...,n},
where X;(0) = [x;,(0),...,x;,(0)]. x;(0) is generated by
randomly selecting a value with uniform probability over
the kth optimized parameter search space [x;™", x; - ]. Simi-
larly, generate randomly initial velocities of all particles,
{Vi(0),j=1,...,n}, where Vi(0)= [v;;(0),...,v;,(0)].
v;1(0) is generated by randomly selecting a value with
uniform probability over the kth dimension [—v;™, vi*™*].
Each particle in the initial population is evaluated using the
objective function, J. For each particle, set Xf(O) = X;(0)
and JJ* =J,j=1..n Search for the best value of the
objective function Ji.y. Set the particle associated with Jyeq
as the global best, X**(0), with an objective function of J**.
Set the initial value of the inertia weight w(0).

Step 2 (Time updating): Update the time counter t = ¢ + 1.
Step 3 (Weight updating): Update the inertia weight w(¢) =
aw(t — 1).

Step 4 (velocity updating): Using the global best and
individual best of each particle, the jth particle velocity in
the kth dimension is updated according to the following
equation:

Via(®) = w(tvpt = 1) + (gt = 1) = x(r = 1)

+ ey (it = 1) = Xt = 1) 16)

where c¢; and ¢, are positive constants and r; and r, are
uniformly distributed random numbers in [0,1]. It is worth
mentioning that the second term represents the cognitive
part of PSO where the particle changes its velocity based
on its own thinking and memory. The third term represents
the social part of PSO where the particle changes its velocity
based on the social-psychological adaptation of knowledge.
If a particle violates the velocity limits, set its velocity equal
to the limit.

Step 5 (Position updating): Based on the updated velocities,
each particle changes its position according to the following
equation:

X (1) = (1) + 2, — 1) a7

If a particle violates the its position limits in any dimension,
set its position at the proper limit.

Step 6 (individual best updating): Each particle is evaluated
according to its updated position. If J; < ]f, j=1,...,n,
then update individual best as X; (1) = X;(t) and J; = J;
and go to step 7; else go to step 7.

Step 7 (Global best updating): Search for the minimum
value J;;, among Jf where min is the index of the particle
with minimum objective function, ie. min € {j;j =
1,...,n}. If J oy, < J°, then update global best as X (¢) =
Xoin () and J** = J,.;., and go to step 8; else go to step 8.
Step 8 (Stopping criteria): If one of the stopping criteria is
satisfied then stop; else go to step 2.

3.3. PSO implementation

The proposed PSO based approach was implemented
using the FORTRAN language and the developed software
program was executed on a 166 MHz Pentium I PC.
Initially, several runs have been done with different values
of the PSO key parameters such as the initial inertia weight
and the maximum allowable velocity. In our implementa-
tion, the initial inertia weight w(0) and the number of inter-
vals in each space dimension N are selected as 1.0 and 10
respectively. Other parameters are selected as: number of
particles n = 50, decrement constant a = 0.98, ¢; = ¢, =
2, and the search will be terminated if (a) the number of
iterations since the last change of the best solution is greater
than 50; or (b) the number of iterations reaches 500.

To demonstrate the effectiveness of the proposed
approach, different cases with various objectives are consid-
ered in this study.

4. Numerical results

The proposed PSO-based approach has been tested on the
standard IEEE 30-bus test system shown in Fig. 1. The
system line and bus data are given in Refs. [18,25].
The system has six generators at buses 1, 2, 5, 8, 11, and
13 and four transformers with off-nominal tap ratio in lines
6-9, 6-10, 4—12, and 28-27. In addition, buses 10, 12, 15,
17, 20, 21, 23, 24, and 29 have been selected in Ref. [25] as
shunt VAR compensation buses. The minimum and
maximum limits on control variables along with the initial
operating point are given in Table 1.

In order to demonstrate the effectiveness and robustness
of the technique, several cases with different objectives to
minimize the total fuel cost, to improve the voltage profile,
and to enhance the system voltage stability have been
considered as follows.

4.1. Case 1: minimization of fuel cost

In this case, the objective function J is considered as the
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Fig. 1. Single-line diagram of IEEE 30-bus test system.

total fuel cost, i.e.
NG

J=fi (/M) (18)
i=1

where f; is the fuel cost of the ith generator.
The generator cost curves are represented by quadratic
functions as

fi=a; + biPg, + ¢;Pg, ($/h) (19)

where a;, b;, and c; are the cost coefficients of the ith genera-
tor. The values of these coefficients are given in Table 2.
The variation of the total fuel cost is shown in Fig. 2. The
optimal settings of the control variables are given in Table 1.
Initially, the total fuel cost was $901.88. The total cost
obtained by the proposed technique is $800.41. It is clear

that the total fuel cost is greatly reduced (11.25% reduction).
It is worth mentioning that the initial operating point has
voltage violations at buses 19-30. However, all these
violations have been alleviated with the proposed optimal
control variable settings. With the same control variable
limits, initial conditions, and other system data, the problem
was solved using gradient-based approach [25] and
improved genetic algorithm-based approach [18] with
optimal fuel costs of $804.583 and $800.805, respectively.
It is clear that the proposed PSO based approach outper-
forms the gradient and GA techniques.

4.2. Case 2: voltage profile improvement

Bus voltage is one of the most important security and
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Table 1

Optimal settings of control variables
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Min Max Initial Case 1 Case 2 Case 3 Case 4

P, 0.50 2.00 0.9921 1.7696 1.7368 1.7553 1.4000
P, 0.20 0.80 0.8000 0.4898 0.4910 0.4798 0.5500
Ps 0.15 0.50 0.5000 0.2130 0.2181 0.2092 0.2415
Py 0.10 0.35 0.2000 0.2119 0.2330 0.2450 0.3500
Py 0.10 0.30 0.2000 0.1197 0.1388 0.1151 0.1851
Py 0.12 0.40 0.2000 0.1200 0.1200 0.1200 0.1779
Vi 0.95 1.10 1.0500 1.0855 1.0142 1.0891 1.0500
V, 0.95 1.10 1.0400 1.0653 1.0022 1.0693 1.0412
Vs 0.95 1.10 1.0100 1.0333 1.0170 1.0464 1.0170
A 0.95 1.10 1.0100 1.0386 1.0100 1.0465 1.0282
Vi 0.95 1.10 1.0500 1.0848 1.0506 1.0277 1.0910
Vis 0.95 1.10 1.0500 1.0512 1.0175 1.0294 1.0876
T 0.90 1.10 1.0780 1.0233 1.0702 0.9694 1.0192
Ty, 0.90 1.10 1.0690 0.9557 0.9000 0.9238 0.9573
Ts 0.90 1.10 1.0320 0.9724 0.9954 0.9467 1.0120
T56 0.90 1.10 1.0680 0.9728 0.9703 0.9820 0.9505
[OR1) 0.00 0.05 0.0 0.0335 0.0403 0.0162 -

Qcin 0.00 0.05 0.0 0.0220 0.0369 0.0424 -

Q.15 0.00 0.05 0.0 0.0198 0.0500 0.0256 -

Q.17 0.00 0.05 0.0 0.0315 0.0000 0.0465 -

Q0 0.00 0.05 0.0 0.0454 0.0500 0.0348 -

(05N 0.00 0.05 0.0 0.0381 0.0500 0.0500 -

Q23 0.00 0.05 0.0 0.0398 0.0500 0.0488 -

Q4 0.00 0.05 0.0 0.0500 0.0500 0.0500 -

Q.29 0.00 0.05 0.0 0.0251 0.0259 0.0500 -

Fuel cost ($/h) 901.88 800.41 806.38 801.16 647.69
> voltage deviations 1.1554 0.8765 0.0891 0.9607 0.7722
Ly 0.1681 0.1296 0.1392 0.1246 0.1417

service quality indices. Considering only cost-based
objectives in OPF problem may result in a feasible solution
that has unattractive voltage profile. In this case, a two-fold
objective function is proposed in order to minimize the fuel
cost and improve voltage profile by minimizing the load bus
voltage deviations from 1.0 per unit. The objective function
can be expressed as

NG
T=>fi+w> [V,—10] (20)
i=1 iENL

where w is a weighting factor. The optimal settings of the
control variables are given in Table 1. The variation of the
total fuel cost is shown in Fig. 3. The system voltage profile
of this case is compared to that of case 1 as shown in Fig. 4.
It is evident that the voltage profile is greatly improved
compared to that of case 1. Specifically, the total sum of
voltage deviations is reduced from 0.8765 in case 1 to
0.0891 in case 2 as given in Table 1. This gives a reduction

Table 2
Generator cost coefficients

G, G, Gs Gy G G
a 0.0 0.0 0.0 0.0 0.0 0.0
b 200 175 100 325 300 300
c 37.5 175 625 83.4 250 250

ratio of 90%. The total generation cost in this case, however,
is slightly increased by 0.75% of that of case 1.

4.3. Case 3: voltage stability enhancement

The power system ability to maintain constantly
acceptable bus voltage at each bus under normal operating
conditions, after load increase, following system configura-
tion changes, or when the system is being subjected to a
disturbance is a very important characteristic of the system.
The nonoptimized control variables may lead to progressive

808 —

804 —

Cost ($/h)

800 L e O I B
0 40 80 120 160 200
Iterations

Fig. 2. Fuel cost variation of case 1.
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Fig. 3. Fuel cost variation of case 2.

and uncontrollable drop in voltage resulting in an eventual
wide spread voltage collapse.

In this case, a two-fold objective function is proposed in
order to minimize the fuel cost and enhance the voltage
stability profile through out the whole power network. In
this study, voltage stability enhancement is achieved
through minimizing the voltage stability indicator L-index
[26—28] values at every bus of the system and consequently
the global power system L-index.

Generally, L-index at any bus varies between zero (no
load case) and one (voltage collapse). In order to enhance
the voltage stability and move the system far from the
voltage collapse point, the following objective function is
proposed

NG
T=fi + WL 1)
i=1

where w is a weighting factor and L, is the maximum
value of L-index defined as
Ly = max{L,K=1,...,NL} 22)

The optimal settings of the control variables are given in
Table 1. The variation of the total fuel cost is shown in

1.10 —

— — [ ] Casen
= - [ Case2
E 1| | H g _
() 11— —— M T S -
he) ™ || — -
E: . | | || L
g S HYH |
2 100 — e | M | A
= T
e i
o
(]
= (.95 —
o
=
e A N N L S L R
o 3 & 9 g2 15 qg 21 5 2T 4
Bus Number

Fig. 4. System voltage profile.
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Fig. 5. Fuel cost variation of case 3.

Fig. 5. It can be seen from Table 1 that the value of L,
at load buses is significantly reduced in this case. Conse-
quently, the voltage stability distance from collapse has
increased.

An additional test has been carried out for different load
levels starting from 50% of the base load with a step
increase of all loads in the system by 0.05 till voltage
collapse. The results show that the maximum load factor
with the initial case is 2.65. On the other hand, the load
factor increases to 3.2 with the optimized control variables
of case 3. This extends the stability margin and gives a gain
in power system MVA loading of 21%. The above positive
results demonstrate the potential of the proposed approach
to improve and enhance the system voltage stability.

4.4. Case 4: piecewise quadratic cost curve

For comparison purposes, the proposed PSO-based OPF
algorithm has been applied to the standard IEEE 30-bus test
system with the system line and bus data as given in Refs.
[2,19]. The upper limit of voltage magnitude at bus 1 is
1.05 pu and there are no shunt VAR compensation buses.
In this case, the cost curves of the generators at buses 1 and 2
are represented by piecewise quadratic functions as given in
Table 3 [19]. The cost curves of the other generators are the
same as case 1. It is obvious that the search space has several
local optimal solutions and, therefore, the gradient methods
are susceptible to getting trapped on local optimal solution.
For this case, the fuel cost objective function of case 1 is
considered. The variation of the total fuel cost is shown in

Table 3
Generator cost coefficients for case 4

From MW To MW Cost coefficients
a b c
Gen 1 50 140 55.0 0.70 0.0050
140 200 82.5 1.05 0.0075
Gen 2 20 55 40.0 0.30 0.0100
55 80 80.0 0.60 0.0200
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Fig. 6. Fuel cost variation of case 4.

Fig. 6. The optimal settings of control variables are given in
Table 1. The total cost obtained by the proposed technique is
$647.69 while the minimum cost obtained by evolutionary
programming [19] after 100 runs was $647.79. It is clear
that the proposed technique outperforms the evolutionary
programming.

5. Discussion

Some comments on the proposed approach are now in
order:

e Unlike the gradient methods, PSO is a population-based
search algorithm, i.e. PSO has implicit parallelism. This
property ensures PSO to be less susceptible to getting
trapped on local minima.

e PSO uses objective function information to guide the
search in the problem space. Therefore, PSO can easily
deal with nondifferentiable and nonconvex objective
functions. Additionally, this property relieves PSO of
assumptions and approximations, which are often
required by traditional optimization methods.

e PSO uses probabilistic rules for particle movements, not
deterministic rules. Hence, PSO is a kind of stochastic
optimization algorithm that can search a complicated and
uncertain area. This makes PSO more flexible and robust
than conventional methods.

e Unlike GA, PSO has the flexibility to control the balance
between the global and local exploration of the search
space. This property enhances the search capabilities of
PSO technique and avoids the premature convergence of
the search process.

e Unlike the traditional methods, the solution quality of the
proposed approach does not rely on the initial population.
Starting anywhere in the search space, the algorithm
ensures the convergence to the optimal solution. With
100 different initializations of case 4, a minimum,
maximum, and average value of the fuel cost is compared

T

able 4

Fuel cost of 100 runs with different initializations

Min Max Ave

Proposed 647.69 647.87 647.73

E

P [19] 647.79 652.67 649.67

to those of EP [19]. The results given in Table 4 empha-
size that the proposed approach finally leads to the
optimal solution regardless the initial one. The results
also confirm the robustness and superiority of the
proposed approach.

The candidate solutions in PSO are coded as a set of real
numbers. However, most of the control variables such as
transformer tap settings and switchable shunt capacitors
change in discrete manner. Real coding of these variables
represents a limitation of the proposed technique as
simple round-off calculations may lead to significant
errors.

. Conclusion

In this paper, a novel particle swarm optimization based

approach to OPF problem has been presented. The proposed
approach utilizes the global and local exploration capabil-
ities of PSO to search for the optimal settings of the control

\%

ariables. Different objective functions have been consid-

ered to minimize the fuel cost, to improve the voltage

p

rofile, and to enhance voltage stability. The proposed

approach has been tested and examined with different objec-
tives to demonstrate its effectiveness and robustness. The
results using the proposed approach were compared to those
reported in the literature. The results confirm the potential of
the proposed approach and show its effectiveness and super-
iority over the classical techniques and genetic algorithms.
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