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Optimal Design of Power–System Stabilizers Using
Particle Swarm Optimization

M. A. Abido

Abstract—In this paper, a novel evolutionary algorithm-based
approach to optimal design of multimachine power-system sta-
bilizers (PSSs) is proposed. The proposed approach employs a
particle-swarm-optimization (PSO) technique to search for op-
timal settings of PSS parameters. Two eigenvalue-based objective
functions to enhance system damping of electromechanical modes
are considered. The robustness of the proposed approach to the
initial guess is demonstrated. The performance of the proposed
PSO-based PSS (PSOPSS) under different disturbances, loading
conditions, and system configurations is tested and examined
for different multimachine power systems. Eigenvalue analysis
and nonlinear simulation results show the effectiveness of the
proposed PSOPSSs to damp out the local and interarea modes
of oscillations and work effectively over a wide range of loading
conditions and system configurations. In addition, the potential
and superiority of the proposed approach over the conventional
approaches is demonstrated.

Index Terms—Dynamic stability, particle swarm optimization,
PSS design.

I. INTRODUCTION

POWER SYSTEMS experience low-frequency oscillations
due to disturbances. The oscillations may sustain and

grow to cause system separation if adequate damping is not
available. To enhance system damping, the generators are
equipped with power system stabilizers (PSSs) that provide
supplementary feedback stabilizing signals in the excitation
systems [1]–[3]. DeMello and Concordia [3] presented the
concepts of synchronous machine stability as affected by
excitation control. They established an understanding of the
stabilizing requirements for static excitation systems. In recent
years, several approaches based on modern control theory
have been applied to PSS design problem. These include
optimal control, adaptive control, variable structure control,
and intelligent control [4]–[8].

Despite the potential of modern control techniques with dif-
ferent structures, power-system utilities still prefer the conven-
tional lead-lag PSS structure [9]–[11]. The reasons behind that
might be the ease of tuning of conventional stabilizer parameters
during commissioning and the lack of assurance of the stability
related to some adaptive or variable structure techniques.

Kunduret al.[11] have presented a comprehensive analysis of
the effects of the different conventional PSS (CPSS) parameters

Manuscript received August 9, 2000; revised December 4, 2001. This work
was supported by King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia.

M. A. Abido is with the Electrical Engineering Department, King Fahd
University of Petroleum and Minerals, Dhahran, Saudi Arabia (e-mail:
mabido@kfupm.edu.sa).

Publisher Item Identifier 10.1109/TEC.2002.801992.

Fig. 1. Three-machine nine-bus power system.

on the overall dynamic performance of the power system. It is
shown that the appropriate selection of CPSS parameters results
in satisfactory performance during system upsets.

A lot of different techniques have been reported in the liter-
ature pertaining to coordinated design problem of CPSS. Dif-
ferent techniques of sequential design of PSSs are presented
[12], [13] to damp out one of the electromechanical modes at a
time. However, the stabilizers designed to damp one mode can
produce adverse effects in other modes. The sequential design of
PSSs is avoided in [14]–[16], where various methods for simul-
taneous tuning of PSSs in multimachine power systems are pro-
posed. Unfortunately, the proposed techniques are iterative and
require heavy computation burden due to system reduction pro-
cedure. In addition, the initialization step of these algorithms is
crucial and affects the final dynamic response of the controlled
system. A gradient procedure for optimization of PSS parame-
ters is presented in [17]. Unfortunately, the problem of the PSS
design is a multimodal optimization problem (i.e., there exists
more than one local optimum). Hence, local optimization tech-
niques are not suitable for such a problem. Moreover, there is
no local criterion to decide whether a local solution is also the
global solution. Therefore, conventional optimization methods
that make use of derivatives and gradients, in general, not able
to locate or identify the global optimum.

Recently, a heuristic search algorithms such as genetic algo-
rithm (GA) [18], [19], tabu search algorithm [20], and simulated
annealing [21] have been applied to the problem of PSS design.
The results are promising and confirm the potential of these
algorithms for optimal PSS design. Unlike other optimization
techniques, GA is a population-based search algorithm, which
works with a population of strings that represent different po-
tential solutions. Therefore, GA has implicit parallelism that
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enhances its search capability and the optima can be located
more quickly when applied to complex optimization problems.
Unfortunately, recent research has identified some deficien-
cies in GA performance [22]. This degradation in efficiency is
apparent in applications with highlyepistaticobjective func-
tions (i.e., where the parameters being optimized are highly
correlated). Also, the premature convergence of GA degrades
its performance and reduces its search capability.

A new evolutionary computation technique, called particle
swarm optimization (PSO), has been proposed and introduced
recently [23]–[26]. This technique combines social psychology
principles in socio-cognition human agents and evolutionary
computations. PSO has been motivated by the behavior of orga-
nizms, such as fish schooling and bird flocking. Generally, PSO
is characterized as a simple concept, easy to implement, and
computationally efficient. Unlike the other heuristic techniques,
PSO has a flexible and well-balanced mechanism to enhance the
global and local exploration abilities.

In this paper, a novel PSO-based approach to PSS design
is proposed. The problem of PSS design is formulated as an
optimization problem with mild constraints and two different
eigenvalue-based objective functions. Then, a PSO algorithm is
employed to solve this optimization problem. To investigate the
potential of the proposed approach, two different examples of
multimachine power systems have been considered. Eigenvalue
analysis and nonlinear simulation results have been carried out
to assess the effectiveness of the proposed PSSs under different
disturbances, loading conditions, and system configurations. In
addition, the performance of the proposed PSOPSS is compared
to that of recent approaches reported in the literature.

II. PROBLEM STATEMENT

A. System Model and PSS Structure

A power system can be modeled by a set of nonlinear differ-
ential equations as

(1)

where is the vector of the state variables, andis the vector
of input variables. In this study, the two-axis model [2] given in
Appendix is used for nonlinear time–domain simulations.

In the design of PSSs, the linearized incremental models
around an equilibrium point are usually employed [1]–[3].
Therefore, the state equation of a power system withma-
chines and stabilizers can be written as

(2)

where is matrix and equals , while is
matrix and equals . Both and are evaluated

at a certain operating point. is state vector, while
is input vector.

A widely used conventional lead-lag PSS is considered in this
study. It can be described as

(3)

where
washout time constant;
PSS output signal at theth machine;
th machine speed deviation from the synchronous

speed.
The time constants , , and are usually prespecified [14].
The stabilizer gain and time constants and remain to
be optimized.

B. Objective Functions

To increase the system damping to electromechanical modes,
two eigenvalue-based objective functions are considered as
follows:

Real electromechanical modes(4)

of electromechanical modes (5)

where Real and are the real part and the damping ratio
of the th electromechanical mode eigenvalue, respectively. In
the optimization process, it is aimed to Minimizein order
to shift the poorly damped eigenvalues to the left in-plane.
On the other hand, it aims to Maximize in order to increase
the damping of electromechanical modes. The problem con-
straints are the optimized parameter bounds. Therefore, the de-
sign problem can be formulated as the following optimization
problem:

Optimize (6)

Subject to

(7)

(8)

(9)

Typical ranges of the optimized parameters are [0.001–50]
for and [0.06–1.0] for and [2]. The time constants

, , and are set as 5 , 0.05, and 0.05 s, respectively [19].
Considering one of the objective functions given in (4) and

(5), the proposed approach employs PSO algorithm to solve this
optimization problem and search for an optimal set of PSS pa-
rameters, .

III. PARTICLE SWARM OPTIMIZATION

A. Overview

Similar to evolutionary algorithms, the PSO technique con-
ducts searches using a population of particles, corresponding to
individuals. Each particle represents a candidate solution to the
problem at hand. In a PSO system, particles change their posi-
tions by flying around in a multidimensional search space until
a relatively unchanged position has been encountered, or until
computational limitations are exceeded. In social science con-
text, a PSO system combines a social-only model and a cog-
nition-only model [23]. The social-only component suggests
that individuals ignore their own experience and adjust their be-
havior according to the successful beliefs of individuals in the
neighborhood. On the other hand, the cognition-only compo-
nent treats individuals as isolated beings. A particle changes its
position using these models.
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TABLE I
LOADS IN PU ON SYSTEM 100-MVA BASE

TABLE II
GENERATORLOADINGS IN PU ON THE GENERATOROWN BASE

Fig. 2. Convergence of objective functions with different initializations.

The advantages of PSO over other traditional optimization
techniques can be summarized as follows.

a) PSO is a population-based search algorithm (i.e., PSO has
implicit parallelism). This property ensures PSO to be less
susceptible to getting trapped on local minima.

b) PSO uses payoff (performance index or objective func-
tion) information to guide the search in the problem space.
Therefore, PSO can easily deal with nondifferentiable ob-
jective functions. Additionally, this property relieves PSO
of assumptions and approximations, which are often re-
quired by traditional optimization methods.

TABLE III
OPTIMAL PARAMETERS OF THEPROPOSEDPSOPSSS

TABLE IV
EIGENVALUES AND DAMPING RATIOS WITHOUT PSSS

TABLE V
EIGENVALUES AND DAMPING RATIOS WITH THE PROPOSEDPSOPSS

(J SETTINGS)

TABLE VI
EIGENVALUES AND DAMPING RATIOS WITH THE PROPOSEDPSOPSS

(J SETTINGS)

c) PSO uses probabilistic transition rules and not determin-
istic rules. Hence, PSO is a kind of stochastic optimiza-
tion algorithm that can search a complicated and uncer-
tain area. This makes PSO more flexible and robust than
conventional methods.

d) Unlike GA and other heuristic algorithms, PSO has the
flexibility to control the balance between the global and
local exploration of the search space. This unique feature
of PSO overcomes the premature convergence problem
and enhances the search capability.

e) Unlike the traditional methods, the solution quality of the
proposed approach does not rely on the initial population.
Starting anywhere in the search space, the algorithm en-
sures the convergence to the optimal solution.

B. PSO Algorithm

The basic elements of PSO technique are briefly stated and
defined as follows.

• Particle : It is a candidate solution repre-
sented by an -dimensional real-valued vector,
where is the number of optimized parameters. At
time , the th particle can be described as

, where are the
optimized parameters and is the position of the
th particle with respect to theth dimension (i.e., the

value of the th optimized parameter in theth candidate
solution).
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• Population : It is a set of particles at time (i.e.,
.

• Swarm: it is an apparently disorganized population of
moving particles that tend to cluster together while each
particle seems to be moving in a random direction [25].

• Particle velocity : It is the velocity of the moving par-
ticles represented by an-dimensional real-valued vector.
At time , the th particle velocity can be described
as , where is
the velocity component of theth particle with respect to
the th dimension.

• Inertia weight : It is a control parameter that is used
to control the impact of the previous velocities on the cur-
rent velocity. Hence, it influences the tradeoff between the
global and local exploration abilities of the particles [25].
For initial stages of the search process, large inertia weight
to enhance the global exploration is recommended while,
for last stages, the inertia weight is reduced for better local
exploration. The decrement function for decreasing the in-
ertia weight given as , where is a decre-
ment constant smaller than but close to 1, is proposed in
this study.

• Individual best : As a particle moves through the
search space, it compares its fitness value at the current
position to the best fitness value it has ever attained at
any time up to the current time. The best position that
is associated with the best fitness encountered so far is
called the individual best . For each particle in the
swarm, can be determined and updated during the
search. In a minimization problem with objective func-
tion , the individual best of the th particle is
determined so that , . For
simplicity, assume that . For the th
particle, individual best can be expressed as

.
• Global best : It is the best position among all of

the individual best positions achieved so far. Hence, the
global best can be determined such that

, . For simplicity, assume that
.

• Stopping criteria: These are the conditions under which
the search process will terminate. In this study, the search
will terminate if one of the following criteria is satisfied:
a) The number of iterations since the last change of the
best solution is greater than a prespecified number;b)
the number of iterations reaches the maximum allowable
number.

The particle velocity in the th dimension is limited by some
maximum value, . This limit enhances the local exploration
of the problem space and it realistically simulates the incre-
mental changes of human learning [23]. The maximum velocity
in the th dimension is characterized by the range of theth op-
timized parameter and given by

(10)

where is a chosen number of intervals in theth dimension.

In a PSO algorithm, the population hasparticles that rep-
resent candidate solutions. Each particle is an-dimensional
real-valued vector, where is the number of optimized param-
eters. Therefore, each optimized parameter represents a dimen-
sion of the problem space. The PSO technique can be described
in the following steps.

Step 1) (Initialization) : Set the time counter and gen-
erate random particles, ,
where .

is generated by randomly selecting a
value with uniform probability over the th op-
timized parameter search space [ ].
Similarly, generate randomly initial velocities
of all particles, , where

. is
generated by randomly selecting a value with
uniform probability over the th dimension
[ ]. Each particle in the initial pop-
ulation is evaluated using the objective function,.
For each particle, set and ,

. Search for the best value of the
objective function . Set the particle associated
with as the global best, , with an
objective function of . Set the initial value of the
inertia weight .

Step 2) (Time updating): Update the time counter .
Step 3) (Weight updating): Update the inertia weight

.
Step 4) (Velocity updating): Using the global best and

individual best, the th particle velocity in the th
dimension is updated according to the following
equation:

(11)

where and are positive constants andand
are uniformly distributed random numbers in [0,1].
Check the velocity limits. If the velocity violated
its limit, set it at its proper limit. It is worth men-
tioning that the second term represents the cognitive
part of PSO where the particle changes its velocity
based on its own thinking and memory. The third
term represents the social part of PSO where the par-
ticle changes its velocity based on the social-psycho-
logical adaptation of knowledge.

Step 5) (Position updating): Based on the updated veloci-
ties, each particle changes its position according to
the following equation:

(12)

Step 6) (Individual best updating): Each particle is eval-
uated according to the updated position. If

, , then update individual best as
and and go to step 7; else

go to step 7.
Step 7) (Global best updating): Search for the minimum

value among , where is the index of the
particle with minimum objective function value, i.e.,
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. If then up-
date global best as and
and go to step 8; else go to step 8.

Step 8) (Stopping criteria): If one of the stopping criteria is
satisfied, then stop, or else go to step 2.

C. PSO Implementation

The proposed PSO–based approach was implemented using
the FORTRAN language and the developed software program
was executed on a 166-MHz Pentium I PC. Practically, our ex-
perience shows that the most effective parameters on PSO per-
formnace are the initial inertia weight and the maximum allow-
able velocity. Initially, several runs have been done with dif-
ferent values of these two parameters. The results show better
performance with initial inertia weight – and
number of intervals in (10) – . It is worth mentioning
that these parameters should be selected carefully for efficient
performance of PSO. In our implementation, the initial inertia
weight and the number of intervals in each space dimen-
sion are selected as 1.0 and 8, respectively. It was observed
that these values work satisfactorily in all simulation results of
this work. Other parameters were set as number of particles

, decrement constant , and the
search will be terminated ifa) the number of iterations since
the last change of the best solution is greater than 50, orb) the
number of iterations reaches 500.

To demonstrate the effectiveness of the proposed design ap-
proach, two different examples of multimachine power systems
are considered. In both examples, PSS parameters are optimized
at the operating condition designated asbase case. To assess
the robustness of the proposed PSS, two additional cases desig-
nated ascase 1andcase 2represent different loading conditions
while system configurations are considered. It is worth men-
tioning that the nonlinear system model is used in time-domain
simulations.

IV. EXAMPLE 1: THREE MACHINE POWER SYSTEM

A. Test System and PSS Design

In this example, the three-machine nine-bus system shown in
Fig. 1 is considered. The rated MVA of , , and are
247.5, 192, and 128, respectively. Details of the system data are
provided in [1]. The participation factor method shows that the
generators and are the optimum locations for installing
PSSs. Hence, the optimized parameters are, , , and

, 3. The range of the optimized parameters was set as
[0.001–20] for and [0.06–1.0] for and . The optimiza-
tion process was carried out at the operating point specified as
base case. The system and generator loading levels at this case
are given in Tables I and II, respectively.

To demonstrate the robustness of the proposed approach
to the initial solution, different initializations have been
considered. The final values of the optimized parameters are
given in Table III. The convergence of objective functions
is shown in Fig. 2. It is clear that, unlike the conventional
methods [12]–[16], the proposed approach finally leads to the
optimal solution regardless of the initial one. Therefore, the
proposed approach can be used to improve the solution quality
of classical methods.

Fig. 3. System response to six-cycle fault withcase 1.

B. Eigenvalue Analysis and Simulation Results

To assess the effectiveness and robustness of the proposed
PSOPSS over a wide range of loading conditions, two different
cases designated ascase 1andcase 2are considered. The gener-
ator and system loading levels at these cases are given in Tables I
and II, respectively. The electromechanical–mode eigenvalues
and corresponding damping ratios without PSSs for all cases are
given in Table IV. This table shows that the system has two local
modes with frequencies of 1.44 and 2.21 Hz in the base case. It
is clear that these modes are poorly damped and some of them
are unstable. The electromechanical–mode eigenvalues and the
corresponding damping ratios with the proposed PSOPSS’s for

and settings are given in Tables V and VI, respectively.
It is obvious that the electromechanical–mode eigenvalues have
been shifted to the left in-plane and the system damping with
the proposed PSOPSSs greatly improved and enhanced.

For further illustration, a six-cycle three-phase fault distur-
bance at bus seven at the end of line 5–7 is considered for the
nonlinear time simulations. The speed deviations are shown in
Fig. 3 with case 1. The performance of the proposed PSOPSS
is compared to that of GA-based PSS (GAPSS) given in [27].
It is clear that the proposed PSOPSSs outperform the GAPSSs
and provide good damping characteristics to low-frequency os-
cillations and greatly enhance the dynamic stability of power
systems.
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Fig. 4. Single–line diagram for New England system.

TABLE VII
OPTIMAL PARAMETERS OF THEPROPOSEDPSOPSSS

V. EXAMPLE 2: NEW ENGLAND POWER SYSTEM

A. Test System and PSS Design

In this example, the ten-machine, 39-bus New England power
system shown in Fig. 4 is considered. Generatoris an equiv-
alent power source representing parts of the U.S.-Canadian in-
terconnection system. Details of the system data are given in
[28].

For illustration and comparison purposes, it is assumed that
all generators except are equipped with PSSs. Hence, the
optimized parameters are , , and ,
(i.e., the number of optimized parameters is 27 in this example).
The range of the optimized parameters was set as [0.001–50]
for and [0.06–1.0] for and . The PSO algorithm has
been applied to search for the settings of these parameters in
order to optimize the objective function considered. The final
values of the optimized parameters are provided in Table VII.
The convergence of objective functions is shown in Fig. 5.

B. Eigenvalue Analysis and Simulation Results

To demonstrate the effectiveness and robustness of the pro-
posed PSOPSSs under severe conditions and critical line out-
ages, two different operating conditions in addition to thebase
caseare considered. They can be described asCase 1: outage of
line 21–22;Case 2: outage of line 14–15.

The electromechanical modes without PSSs for the three
cases are shown in Table VIII. This table shows that the system
has one interarea mode with a frequency of 0.64 Hz and eight
local modes with frequencies ranging from 0.92 to 1.54 Hz in
the base case. It is clear that these modes are poorly damped

Fig. 5. Objective function convergence.

TABLE VIII
EIGENVALUES AND DAMPING RATIOS WITHOUT PSSS

and some of them are unstable. The electromechanical–mode
eigenvalues and the corresponding damping ratios with the
proposed PSOPSSs for and settings are given in Tables IX
and X, respectively. It can be seen that the electromechanical
mode eigenvalues with the proposed PSSs have been shifted
to the left in -plane. It is obvious that the system damping is
greatly improved and enhanced for all cases.

For time-domain simulations, two different three-phase faults
have been applied to demonstrate the effectiveness and the ro-
bustness of the proposed PSOPSSs as follows:

a) a six-cycle three-phase fault at bus 29 at the end of line
26–29;

b) a six-cycle three-phase fault at bus 14 at the end of line
14–15.

These faults have been applied with different cases resulting
in the following combination of disturbances:

1) fault (a) withbase case;
2) fault (a) withcase 1;
3) fault (a) withcase 2;
4) fault (a) withbase caseand the faulty line is tripped of

for 1.0 s;
5) fault (b) with base caseand the faulty line is tripped of

for 1.0 s.
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TABLE IX
EIGENVALUES AND DAMPING RATIOS WITH THE PROPOSEDPSOPSSS

(J SETTINGS)

TABLE X
EIGENVALUES AND DAMPING RATIOS WITH THE PROPOSEDPSOPSSS

(J SETTINGS)

The performance of the proposed PSOPSSs is compared to
that of GAPSSs given in [19] and gradient-based PSSs given in
[17]. Due to space limitations, only the speed deviations of
and are shown in Figs. 6 and 7 with disturbance 1 and distur-
bance 4, respectively. Fig. 7 shows that the gradient based PSSs
are not able to stabilize the system under disturbance 4. It is
clear that the system performance with the proposed PSOPSSs
is much better than that of GAPSSs and the oscillations are
damped out much faster. In addition, the proposed PSOPSSs
are quite efficient to damp out the local modes as well as the in-
terarea modes of oscillations. This illustrates the potential and
superiority of the proposed design approach to obtain an optimal
set of PSS parameters.

For completeness and clear perceptiveness about the system
response for all of the disturbances listed, two performance in-
dices that reflect the settling time and overshoots are introduced
and evaluated. These indices are defined as

(13)

(14)

where is the number of machines, and is the simulation
time. The values of these indices with the disturbances consid-
ered are provided in Table XI. It is clear that the values of these
indices with the proposed PSOPSSs are much smaller compared
to gradient-based PSSs and GAPSSs. This demonstrates that the
settling time and speed deviations of all units are greatly reduced
by applying the proposed PSOPSSs. Although the robustness
has been considered in gradient-based PSS design [17], they fail

Fig. 6. System responses with disturbance 1.

Fig. 7. System responses with disturbance 4.
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TABLE XI
PERFORMANCEINDICES WITH DIFFERENTDISTURBANCES

to stabilize the system with disturbances four and five. On the
other hand, the proposed PSSs provide good damping character-
istics and outperform GAPSS under these severe disturbances.

APPENDIX

In this work, the th machine model is given as follows:

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

and direct and quadrature axes, respectively;
rotor angle;
rotor speed;

and internal voltages behind and ,
respectively;
equivalent excitation voltage;
electric torque;
time constants of excitation circuit;
regulator gain;
regulator time constant.
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