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Optimal Design of Power—System Stabilizers Using
Particle Swarm Optimization

M. A. Abido
Abstract—n this paper, a novel evolutionary algorithm-based l Load C |
approach to optimal design of multimachine power-system sta- 3 @
bilizers (PSSs) is proposed. The proposed approach employs a |_ 3 ’
particle-swarm-optimization (PSO) technique to search for op- ! ! b ! !

timal settings of PSS parameters. Two eigenvalue-based objective
functions to enhance system damping of electromechanical modes s - 6
are considered. The robustness of the proposed approach to the l

initial guess is demonstrated. The performance of the proposed
PSO-based PSS (PSOPSS) under different disturbances, loading
conditions, and system configurations is tested and examined V\LJ
for different multimachine power systems. Eigenvalue analysis

and nonlinear simulation results show the effectiveness of the
proposed PSOPSSs to damp out the local and interarea modes
of oscillations and work effectively over a wide range of loading
conditions and system configurations. In addition, the potential
and superiority of the proposed approach over the conventional
approaches is demonstrated. Fig. 1. Three-machine nine-bus power system.

Index Terms—bDynamic stability, particle swarm optimization,
PSS design.
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on the overall dynamic performance of the power system. It is
shown that the appropriate selection of CPSS parameters results
I. INTRODUCTION in satisfactory performance during system upsets.

OWER SYSTEMS experience low-frequency oscillations A lot of dliff.erent technigues have.been reported in the Iiter-
due to disturbances. The oscillations may sustain aAgr€ Pertaining to coordinated design problem of CPSS. Dif-

grow to cause system separation if adequate damping is ent techniques of sequential design of PSS-s are presented
available. To enhance system damping, the generators drel [13]t0 damp out one of the electromechanical modes at a
equipped with power system stabilizers (PSSs) that provillB1e: However, the stabilizers designed to damp one mode can
supplementary feedback stabilizing signals in the excitatic?ﬁOdU(_:e adv.erse.effectsm othermodes..The sequential de.5|gn of
systems [1]-[3]. DeMello and Concordia [3] presented tHSSs is avo_|ded in [14]—_[16],vv_here various methods for simul-
concepts of synchronous machine stability as affected FN€OUS tuning of PSSs in multimachine power systems are pro-
excitation control. They established an understanding of tﬂgsgd. Unfortunately, the proposed techniques are |ter§t|ve and
stabilizing requirements for static excitation systems. In receiduire heavy computation burden due to system reduction pro-
years, several approaches based on modern control the‘fﬁQure' In addition, the initialization step of these algorithms is

have been applied to PSS design problem. These incILRfHCial and affects the final dynamic response of the controlled
optimal control, adaptive control, variable structure controfyStem- A gradient procedure for optimization of PSS parame-
and intelligent control [4][8]. ters is presented in [17]. Unfortunately, the problem of the PSS

Despite the potential of modern control techniques with difl€Sign is @ multimodal optimization problem (i.e., there exists
ferent structures, power-system utilities still prefer the convefiore than one local optimum). Hence, local optimization tech-
tional lead-lag PSS structure [9]-[11]. The reasons behind tfigues are not suitable for such a problem. Moreover, there is
might be the ease of tuning of conventional stabilizer paramet&f%0cal criterion to decide whether a local solution is also the
during commissioning and the lack of assurance of the stabil@PP2! solution. Therefore, conventional optimization methods
related to some adaptive or variable structure techniques. &t make use of derivatives and gradients, in general, not able

Kunduret al.[11] have presented a comprehensive analysis & /ocate or identify the global optimum.

the effects of the different conventional PSS (CPSS) parameter&ecently, a heuristic search algorithms such as genetic algo-
rithm (GA) [18], [19], tabu search algorithm [20], and simulated

_ _ , ~annealing [21] have been applied to the problem of PSS design.
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enhances its search capability and the optima can be locatdtere

more quickly when applied to complex optimization problems. 7, washout time constant;

Unfortunately, recent research has identified some deficien-/; PSS output signal at thgh machine;

cies in GA performance [22]. This degradation in efficiency is Aw; 4th machine speed deviation from the synchronous
apparent in applications with highlgpistatic objective func- speed.

tions (i.e., where the parameters being optimized are highlye time constants,,, 7>, and7}, are usually prespecified [14].
correlated). Also, the premature convergence of GA degradee stabilizer gaik; and time constant;; and3; remain to

its performance and reduces its search capability. be optimized.

A new evolutionary computation technique, called particle
swarm optimization (PSO), has been proposed and introdud
recently [23]-[26]. This technique combines social psychology To increase the system damping to electromechanical modes,
principles in socio-cognition human agents and evolutionatyo eigenvalue-based objective functions are considered as
computations. PSO has been motivated by the behavior of orégllows:
nizms, such as fish schooling and bird flocking. Generally, PSO .
is characterized as a simple concept, easy to implement, and”/1 =max {Real(X;) : A; € electromechanical modgg4)
computationally efficient. Unlike the other heuristic techniques, /2 =min {¢; : ¢; € (s of electromechanical modgs (5)

PSO has aflexible and well-balanced mechanism to enhance trﬂ]e | q h | dthe d . .
global and local exploration abilities. where Redl\;) and(; are the real part and the damping ratio

ié heith electromechanical mode eigenvalue, respectively. In

Obijective Functions

In this paper, a novel PSO-based approach to PSS dest A fimizati it is aimed to Minimizei d
is proposed. The problem of PSS design is formulated as § optimization process, It is aimed to Minimizein order

optimization problem with mild constraints and two differeng shift the poorly damped eigenvalues to the leftsiplane.

eigenvalue-based objective functions. Then, a PSO algorithr%gé tg:ﬂ?;?:; r;?nglégt?cl)mse::?]x\?;;ﬂfzgéZsor('?'i:?);gggzsion-
employed to solve this optimization problem. To investigate ths? aints are the ootimi : i

d . ptimized parameter bounds. Therefore, the de
potential of the proposed approach, two different examples of

multimachine power systems have been considered. EigenvasfI ! lproplem can be formulated as the following optimization
analysis and nonlinear simulation results have been carried Blrj? em.

to assess the effectiveness of the proposed PSSs under different OptimizeJ (6)
disturbances, loading conditions, and system configurations. In

- . Subject to
addition, the performance of the proposed PSOPSS is compared Ijnin s
to that of recent approaches reported in the literature. K; ) SKi S K @)
T <Tu < T (8)
Il. PROBLEM STATEMENT T;i““ <y < T30 9)

A. System Model and PSS Structure Typical ranges of the optimized parameters are [0.001-50]
A power system can be modeled by a set of nonlinear diffefior K; and [0.06—1.0] fofl1; andT3; [2]. The time constants

ential equations as T, 1>, andT, are setas 5, 0.05, and 0.05 s, respectively [19].
Considering one of the objective functions given in (4) and
)’( = f(X,U) (1) (5), the proposed approach employs PSO algorithm to solve this
optimization problem and search for an optimal set of PSS pa-
whereX is the vector of the state variables, diids the vector rameters{K,,T1;,75;,¢ = 1,2,...,npss}.
of input variables. In this study, the two-axis model [2] given in
Appendix is used for nonlinear time—domain simulations. lll. PARTICLE SWARM OPTIMIZATION
In the design of PSSs, the linearized incremental models Overview
around an equilibrium point are usually employed [1]-[3]." _ ) ]
Therefore, the state equation of a power system witina- Similar to evolutionary algorithms, the PSO technique con-
chines andi pss stabilizers can be written as ducts searches using a population of particles, corresponding to
individuals. Each particle represents a candidate solution to the
A).( — AAX + BU ) problem at hand. In a PSO system, particles change their posi-

tions by flying around in a multidimensional search space until
whereA is 4n x 4n matrix and equal§ f/9.X, while Bisdn x & relatively unchanged position has been encountered, or until

npss matrix and equal®f/oU. Both A and B are evaluated computational limitations are exceeded. In social science con-
at a certain operating poinh X is 4n x 1 state vector, whilg/  t€xt, @ PSO system combines a social-only model and a cog-

is npss x 1 input vector. nition-only model [23]. The social-only component suggests
Awidely used conventional lead-lag PSS is considered in tfRat individuals ignore their own experience and adjust their be-
study. It can be described as havior according to the successful beliefs of individuals in the

neighborhood. On the other hand, the cognition-only compo-
nent treats individuals as isolated beings. A particle changes its
position using these models.

STzu (1 + 3T17) (1 + 3T37)
U = K, Aw; 3
1+ T (Lt sD3) (L4 sTy) 3
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TABLE |
LOADS IN Pu ON SysTEM 100-MVA BASE

TABLE Il
OPTIMAL PARAMETERS OF THEPROPOSEDPSOPSS

Base Case Case 1 Case 2 CHyaerive Funciion Jy Dfearive Fusoios Jy
Load - & T T & T T
P Q P Q P Q 1 i 1 3
A 1250 0500 2000 0800 1500  0.900 G k23 a0 137 1742 1000 0050
B 0900 0300 1800 0600 1200  0.800 L) Ll 8524 Lol L D153
C 1.000 0.350 1.500 0.600 1.000 0.500
TABLE IV
EIGENVALUES AND DAMPING RATIOS WITHOUT PSS
TABLE 1l
GENERATOR LOADINGS IN PU ON THE GENERATOR OWN BASE Base Case Case 1 Case 2

Gen. Base Case Case 1 Case 2
P o P 4] P o
Gy 0.289 0.109 0.892 0.440 0.135 0.453
G2 0.849 0.035 1.000 0.294 1.042 0.296
Gy 0.664 -0.085 1.000 0.280 1.172 0.298
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Fig. 2. Convergence of objective functions with different initializations.

-0.01 17 9.07, 0.001
-0.78 4/ 13.86, 0.056

0.38 1/ 8.87, -0.034
-0.34 4/ 13.69, 0.025

-0.0245 8.91, 0.002
-0.52 4/ 13.83, 0.038

TABLE V

EIGENVALUES AND DAMPING RATIOS WITH THE PROPOSEDPSOPSS

(J1 SETTINGS)

(J1 SETTINGS)

Base Case Case 1 Case 2

-3.74 47 18.77, 0.195

-2.53 4 8.28, 0.292
-3.93 1) 18.55, 0.207

-3.73 47 8.76, 0.391 -2.35477.62,0.294

4.114718.85, 0.213

TABLE VI

EIGENVALUES AND DAMPING RATIOS WITH THE PROPOSEDPSOPSS

(J2 SETTINGS)

(J> SETTINGS)

Base Case Case 1 Case2

-3.57 45 13.02, 0.264

-1.62 47 7.62,0.208
-2.42313.62,0.175

-1.5147.95,0.187
-2.68 £ 12.92, 0.203

2,15 4/ 7.85, 0.264

c)

d)

e)

PSO uses probabilistic transition rules and not determin-
istic rules. Hence, PSO is a kind of stochastic optimiza-
tion algorithm that can search a complicated and uncer-
tain area. This makes PSO more flexible and robust than
conventional methods.

Unlike GA and other heuristic algorithms, PSO has the
flexibility to control the balance between the global and
local exploration of the search space. This unique feature
of PSO overcomes the premature convergence problem
and enhances the search capability.

Unlike the traditional methods, the solution quality of the
proposed approach does not rely on the initial population.
Starting anywhere in the search space, the algorithm en-
sures the convergence to the optimal solution.

B. PSO Algorithm

The advantages of PSO over other traditional optimization The basic elements of PSO technique are briefly stated and

techniques can be summarized as follows.

a) PSOis a population-based search algorithen PSO has

defined as follows.

is a candidate solution repre-
real-valued vector,

Particle X(¢): It
sented by an m-dimensional

b)

implicit parallelism). This property ensures PSO to be less
susceptible to getting trapped on local minima.

PSO uses payoff (performance index or objective func-
tion) information to guide the search in the problem space.
Therefore, PSO can easily deal with nondifferentiable ob-
jective functions. Additionally, this property relieves PSO
of assumptions and approximations, which are often re-
quired by traditional optimization methods.

where m is the number of optimized parameters. At
time ¢, the jth particle X;(¢t) can be described as
X;(t) = [zj1(8), z2(t), ..., x;m(t)], wherezs are the
optimized parameters and; ,(¢) is the position of the

jth particle with respect to théth

dimension i(e., the

value of thekth optimized parameter in thgh candidate

solution).
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Populationpop(t): It is a set ofn particles at time (i.e., In a PSO algorithm, the population hagatrticles that rep-
pop(t) = [X1(t), Xa(),..., X, ()]*. resent candidate solutions. Each particle isralimensional
Swarm it is an apparently disorganized population ofeal-valued vector, where is the number of optimized param-
moving particles that tend to cluster together while eadters. Therefore, each optimized parameter represents a dimen-
particle seems to be moving in a random direction [25].sion of the problem space. The PSO technique can be described
Particle velocityV (¢): It is the velocity of the moving par- in the following steps.

ticles represented by an-dimensional real-valued vector. Step 1) (Initialization) : Set the time counter= 0 and gen-

At time ¢, thejth particle velocityV;(¢) can be described erate randome particles,{X;(0),7 = 1,2,...,n},

ast(t) = [Uj,l(t)v Uj,?(t)v sy Uj,m(t)]’ Wherevj,k(t) is

the velocity component of thgth particle with respect to

the kth dimension.

Inertia weight w(¢): It is a control parameter that is used

to control the impact of the previous velocities on the cur-
rent velocity. Hence, it influences the tradeoff between the
global and local exploration abilities of the particles [25].
For initial stages of the search process, large inertia weight
to enhance the global exploration is recommended while,
for last stages, the inertia weight is reduced for better local
exploration. The decrement function for decreasing the in-
ertiaweight given as(t) = aw(t—1), wherex is a decre-
ment constant smaller than but close to 1, is proposed in
this study.

Individual best X*(¢): As a particle moves through the
search space, it compares its fithess value at the current
position to the best fitness value it has ever attained at
any time up to the current time. The best position that
is associated with the best fitness encountered so far is
called the individual besk*(¢). For each particle in the
swarm, X *(¢) can be determined and updated during the
search. In a minimization problem with objective func-
tion J, the individual best of thgth particle X7 (¢) is
determined so thaf (X7 (t)) < J(X;(7)), 7 < t. For
simplicity, assume thay; =
particle, individual best can be expressed.a§(t) =
[‘/E;,l(t)v .’17;72 (t)v te 7$;,m(t)] '

Global bestX**(¢): It is the best position among all of
the individual best positions achieved so far. Hence, the
global best can be determined such tHafX{**(¢)) <
J(X7(t), 5 = 1,2,...,n. For simplicity, assume that
T = J(X*(t)).

Stopping criteria These are the conditions under which
the search process will terminate. In this study, the search
will terminate if one of the following criteria is satisfied:

a) The number of iterations since the last change of the
best solution is greater than a prespecified numbgr;

S

J(X5(0). For thejth ua(t) = w(t)oja(t — 1)+ o (20t -

where XJ(O) = [xj71(0)7xj72(0)7"'7xj7"l(0)]'
x;1(0) is generated by randomly selecting a
value with uniform probability over the&th op-
timized parameter search spacef, x|,
Similarly, generate randomly initial velocities
of all particles,{V;(0),; = 1,2,...,n}, where
Vi(0) = [v;1(0),7;,2(0), .., v;m(0)]- v;x(0) is
generated by randomly selecting a value with
uniform probability over the kth dimension
[—vpaX v2¥]. Each particle in the initial pop-
ulation is evaluated using the objective function,
For each particle, seX}(0) = X;(0) and.J; = J;,

4 = 1,2,...,n. Search for the best value of the
objective functionJy,.s;. Set the particle associated
with Ji,est as the global bestX**(0), with an
objective function of/**. Set the initial value of the
inertia weightw(0).

Step 2) (Time updating) Update the time countér= ¢+ 1.
tep 3) (Weight updating) Update the inertia weight

w(t) = aw(t — 1).

Step 4) (Velocity updating) Using the global best and

individual best, thejth particle velocity in thekth
dimension is updated according to the following
equation:

1) —zjx(t —1))
+eara (@55t = 1) — aya(t - 1)) (1D)

wherec; andc; are positive constants amgd andrs

are uniformly distributed random numbers in [0,1].
Check the velocity limits. If the velocity violated
its limit, set it at its proper limit. It is worth men-
tioning that the second term represents the cognitive
part of PSO where the particle changes its velocity
based on its own thinking and memory. The third
term represents the social part of PSO where the par-
ticle changes its velocity based on the social-psycho-
logical adaptation of knowledge.

the number of iterations reaches the maximum allowable Step 5) (Position updating) Based on the updated veloci-

number.

The particle velocity in théth dimension is limited by some
maximum valuey;***. This limit enhances the local exploration
of the problem space and it realistically simulates the incre-
mental changes of human learning [23]. The maximum velocity Step 6) (Individual best updating) Each particle is eval-
in the kth dimension is characterized by the range offtieop-
timized parameter and given by

(leax _ xl]zlm)

N

Uzlax —

(10)

where/N is a chosen number of intervals in théh dimension.

ties, each particle changes its position according to
the following equation:

xjjk(t) = ijk(t) + $j7k(t - 1. (12)

uated according to the updated position.Jlf <
Ji, 7 =1,2,...,n, then update individual best as
X71(t) = X;(t) andJ; = J;, and go to step 7; else
gotostep 7.

Step 7) (Global best updating) Search for the minimum

value.J,;,, among/*, wheremin is the index of the
particle with minimum objective function value, i.e.,
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min € {j;7=1,2,...,n}. If Jpm < J** then up- 0008 MoPss
date global best a&** = X,,,in(t), andJ** = Jouin 0006 | T ememapso pss s
and go to step 8; else go to step 8. 0004 -] Propased PSO PSS with J;

Step 8) (Stopping criteria) If one of the stopping criteria is
satisfied, then stop, or else go to step 2.

Ao, {pu)

C. PSO Implementation

The proposed PSO-based approach was implemented using S N
the FORTRAN language and the developed software program
was executed on a 166-MHz Pentium | PC. Practically, our ex-
perience shows that the most effective parameters on PSO per- T T enapsopssuin
formnace are the initial inertia weight and the maximum allow- o0t0 /\ Proposed PSO PSS with Iy

No PSS

able velocity. Initially, several runs have been done with dif-
ferent values of these two parameters. The results show better
performance with initial inertia weight/(0) € [0.8-1.2] and
number of intervals in (10N € [5-10]. It is worth mentioning 0010 -
that these parameters should be selected carefully for efficient
performance of PSO. In our implementation, the initial inertia

Amz {pu)
g
]

. . . . 0.00 1.00 2.00 400
weightw(0) and the number of intervals in each space dimen- wopss | TMe(®)
sion N are selected as 1.0 and 8, respectively. It was observed I GAPSS
that these values work satisfactorily in all simulation results of I = Proposed PSO PSS with Jq
———Proposed PSO PSS with Jp

this work. Other parameters were set as number of particles 0005

n = 50, decrement constamt = 0.98, ¢c; = ¢ = 2 and the

search will be terminated &) the number of iterations since

the last change of the best solution is greater than 58) tire

number of iterations reaches 500. 0005
To demonstrate the effectiveness of the proposed design ap-

proach, two different examples of multimachine power systems T T -

are considered. In both examples, PSS parameters are optimized : Time (s)

at the operating condition designatedlase caseTo assess

the robustness of the proposed PSS, two additional cases desig- : :

nated agase 1andcass Zcfpresent different loading conditionsagg& System response to six-cycle fault widse 1

while system configurations are considered. It is worth men-

tioning that the nonlinear system model is used in time-doma Eigenvalue Analysis and Simulation Results

simulations.

Am3 (pu)
g
|

0.010

To assess the effectiveness and robustness of the proposed
V. EXAMPLE 1: THREE MACHINE POWER SYSTEM PSOPSS over a wide range of loading conditions, two different
) cases designated ease landcase Zare considered. The gener-
A. Test System and PSS Design ator and system loading levels at these cases are givenin Tables |

In this example, the three-machine nine-bus system showraind I, respectively. The electromechanical-mode eigenvalues
Fig. 1 is considered. The rated MVA df;, G2, andG5 are and corresponding damping ratios without PSSs for all cases are
247.5, 192, and 128, respectively. Details of the system data gieen in Table IV. This table shows that the system has two local
provided in [1]. The participation factor method shows that thmodes with frequencies of 1.44 and 2.21 Hz in the base case. It
generators+, andG3 are the optimum locations for installingis clear that these modes are poorly damped and some of them
PSSs. Hence, the optimized parametersigyely;, 13;, and are unstable. The electromechanical-mode eigenvalues and the
1 = 2, 3. The range of the optimized parameters was set @xresponding damping ratios with the proposed PSOPSS's for
[0.001-20] forK; and [0.06—1.0] foff}; andZ3;. The optimiza- J; and.J, settings are given in Tables V and VI, respectively.
tion process was carried out at the operating point specifiedltis obvious that the electromechanical-mode eigenvalues have
base caseThe system and generator loading levels at this calseen shifted to the left is-plane and the system damping with
are given in Tables | and Il, respectively. the proposed PSOPSSs greatly improved and enhanced.

To demonstrate the robustness of the proposed approackor further illustration, a six-cycle three-phase fault distur-
to the initial solution, different initializations have beerbance at bus seven at the end of line 5-7 is considered for the
considered. The final values of the optimized parameters arenlinear time simulations. The speed deviations are shown in
given in Table Ill. The convergence of objective function&ig. 3 with case 1 The performance of the proposed PSOPSS
is shown in Fig. 2. It is clear that, unlike the conventionas compared to that of GA-based PSS (GAPSS) given in [27].
methods [12]-[16], the proposed approach finally leads to tltes clear that the proposed PSOPSSs outperform the GAPSSs
optimal solution regardless of the initial one. Therefore, thend provide good damping characteristics to low-frequency os-
proposed approach can be used to improve the solution quatitjyations and greatly enhance the dynamic stability of power
of classical methods. systems.
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Fig. 4. Single—line diagram for New England system. l§ i
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TABLE ViII o] J
OPTIMAL PARAMETERS OF THEPROPOSEDPSOPSS
ST " 1 T T 1
Gen Objective Function J\ Objective Function J3 o 40 80 . 160 200
k Ti T3 k T Ts lterations
G, 38462 0.728 0. 603 30.644 0.638 1. 000 i o )
Gy 21538  0.719  0.785  40.633  0.673 0.324 Fig. 5. Objective function convergence.
Gy 19716 0.953 0.592 47.775 0.530 0.977
Gs  38.040 0. 131 0. 251 15.536 0.810 0. 140
Gs 46057  0.477  0.857 24872  1.000  0.834 e I;AB'-E \Q,LI w psa
G, 51928  0.294  0.199 10514  1.000  0.529 IGENVALUES AND DAMPING RATIOS WITHOUT
Gs 23418 1. 000 1. 000 23.957 1. 000 1. 000
Gy 49.998 0.176 0.136 24.551 0.102 0. 549 Base Case Case 1 Case2
Gio 31.462 1. 000 0.992 26.998 1. 000 1. 000 0.191 4 5.808, -0.033 0.195 +j 5.716, -0.034 0.152 1/ 5.763, -0.026

V. EXAMPLE 2: NEW ENGLAND POWER SYSTEM

A. Test System and PSS Design

In this example, the ten-machine, 39-bus New England pow
system shown in Fig. 4 is considered. Generétois an equiv-

0.088 15 4.002, -0.022
-0.028 17 9.649, 0.003
-0.034 17 6.415, 0.005
-0.056 1/ 7.135, 0.008
-0.093 4 8.117, 0.011
-0.172 4 9.692, 0.018
-0.220 47 8.013, 0.027
-0.270 45 9.341, 0.029

0.121 15 3.798, -0.032

0.097 17 6.006, -0.016
-0.032 47 9.694, 0.003
-0.104 4 8.015, 0.013
-0.109 47 6.515, 0.017
-0.168 £ 9.715, 0.017
-0.204 15 8.058, 0.025
-0.250 7 9.268, 0.027

0.095 +j 3.837, -0.025

0.033 15 6.852, -0.005
-0.026 17 9.659, 0.003
-0.094 17 8.120, 0.012
-0.100 7 6.038, 0.017
-0.171 £/ 9.696, 0.018
-0.219 7 8.000, 0.027
-0.259 7 9.320, 0.028

alent power source representing parts of the U.S.-Canadian -
terconnection system. Details of the system data are given in
[28]. and some of them are unstable. The electromechanical-mode
For illustration and comparison purposes, it is assumed ti@igenvalues and the corresponding damping ratios with the
all generators excep; are equipped with PSSs. Hence, theroposed PSOPSSs fér and.J; settings are given in Tables IX
optimized parameters aik;, 71;, andTs;, ¢ = 2,3,...,10 and X, respectively. It can be seen that the electromechanical
(i.e., the number of optimized parameters is 27 in this exampl&)ode eigenvalues with the proposed PSSs have been shifted
The range of the optimized parameters was set as [0.001-Bpthe left ins-plane. It is obvious that the system damping is
for K; and [0.06-1.0] fotl}; and73;. The PSO algorithm has greatly improved and enhanced for all cases.
been applied to search for the settings of these parameters iffor time-domain simulations, two different three-phase faults
order to optimize the objective function considered. The fin&iave been applied to demonstrate the effectiveness and the ro-
values of the optimized parameters are provided in Table VRustness of the proposed PSOPSSs as follows:
The convergence of objective functions is shown in Fig. 5. a) a six-cycle three-phase fault at bus 29 at the end of line
26-29;
b) a six-cycle three-phase fault at bus 14 at the end of line
To demonstrate the effectiveness and robustness of the pro- 14-15.
posed PSOPSSs under severe conditions and critical line outThese faults have been applied with different cases resulting
ages, two different operating conditions in addition toliase in the following combination of disturbances:
caseare considered. They can be describe@ase 1 outage of 1) fault (a) withbase case
line 21-22;Case 2 outage of line 14-15. 2) fault (a) withcase 1
The electromechanical modes without PSSs for the three3) fault (a) withcase 2
cases are shown in Table VIII. This table shows that the system4) fault (a) withbase caseand the faulty line is tripped of
has one interarea mode with a frequency of 0.64 Hz and eight for 1.0 s;
local modes with frequencies ranging from 0.92 to 1.54 Hz in 5) fault (b) with base casand the faulty line is tripped of
the base case. It is clear that these modes are poorly damped for 1.0 s.

B. Eigenvalue Analysis and Simulation Results
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TABLE IX
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——— Gradient-based PSS
EIGENVALUES AND DAMPING RATIOS WITH THE PROPOSEDPSOPSS 0004 — G:P::
(J1 SETTINGS) " - )
':: Proposed PSOPSS (J4Settings)
i Proposed PSOPSS (J5!
Base Case Case 1 Case 2 0.002 1 ::'1
-1.754%12.865,0.522  -1.423373.143,0.412  -1.523 % 2.620, 0.503 _
175647 12.42,0.140  -1.56449.974,0.155  -1.658 +9.646,0.169 2
-1.758 £/ 9.703,0.178  -1.7344j12.38,0.139  -1.752 4 12.41, 0.140 o 0.000 = ¢
-1.759479.959,0.174  -1.778 £ 10.95,0.160  -1.753 4 10.02, 0.172 < v Y
1762 48.203,0.210  -1.799 £ 12.04,0.148  -1.768 1 10.97, 0.159 Ly
-1.7644710.98, 0.159  -1.843 £79.937,0.182  -1.7954710.97, 0.164 -0.002 1 Af L
-1.810410.79, 0.165  -1.95149.042,0.211  -1.832%j7.329,0.243 Y
-1.82945 12,08, 0.150  -2.124 45 10.688, 0.195  -1.834 45 12.08, 0.150 i
2.2714/9.826,0225 2266+ 7.489,0.290  -2.380 47 9.818, 0.234 -0.004 T T T ] T | T |
0.00 2.00 4,00 6.00 8.00
Time (s)
TABLE X o —
EIGENVALUES AND DAMPING RATIOS WITH THE PROPOSEDPSOPSS o010 —-=- Gradient-based PSS
(Jo SETTINGY) 1 aaas GAPSS
Prop PSOPSS (J4Setting
Base Case Case 1 Case 2 0.005 ‘\‘ Proposed PSOPSS (J;Setti
-0.782472.858,0.264  -0.691472.901,0.232  -0.730 £ 2.736, 0.258 5
-1.409475.130,0.265  -0.98144.496,0.213  -1.412 4 5.075, 0.268 & owd )
-1573478.119,0.190  -1.493479.093,0.162  -1.546 +9.428,0.162 S
-1.762 479,143, 0.189  -1.674 £/ 8.000, 0.205  -1.556 4 7.410, 0.206 <
-1771459.730,0.179  -2.060 £ 10.24,0.197  -2.140 £ 9.648, 0.217 0005
21734712.16,0.176  -2219%712.11,0.180  -2.146 £ 10.27, 0.205 .
217847 10.39,0.205  -2.237412.45,0.177  -2.169 % 12.17,0.175
22524712.51,0.177 2248 4j9.323,0.234  -2.258 4 12.49,0.178
2.5134713.78,0.179  -2.621 4/ 13.63,0.189  -2.603 4/ 13.77, 0.186 -0.010 T T T T T T T 1
0.00 2.00 4.00 6.00 8.00
Time (s)
The performance of the proposed PSOPSSs is compare<|j:jto6 Svstem responses with disturbance 1
that of GAPSSs given in [19] and gradient-based PSSs given i Y P ‘
[17]. Due to space limitations, only the speed deviation& of
and@, are shown in Figs. 6 and 7 with disturbance 1 and distur: . .
bance 4, respectively. Fig. 7 shows that the gradient based PS 0.010 — I' ——— Gradient-based PSS
are not able to stabilize the system under disturbance 4. It i i GAPSS
clear that the system performance with the proposed PSOPS 0,005 i zroposed :zg::: E‘l.1Semngs)
is much better than that of GAPSSs and the oscillations ar i 3 - o
damped out much faster. In addition, the proposed PSOPS: g
are quite efficient to damp out the local modes as well as the in ;;o 0.000 —
terarea modes of oscillations. This illustrates the potential an <
superiority of the proposed design approach to obtain an optimi -0.005 -
set of PSS parameters.
For completeness and clear perceptiveness about the systt
response for all of the disturbances listed, two performance in -0o10 — T T T T T T ' 1
dices that reflect the settling time and overshoots are introduce 0.0 200 “rime (s;“’“ 800 1000
and evaluated. These indices are defined as
n t=t,; 0.020 — , === Gradientbased PSS
_ s N2 i mm—-- GAPSS
Ph = Z /t 0 (tAw;)” dt (13) § 4 e Propossd PSOPSS (JySetings)
i=1""" 0.010 - o d PSOPSS (4
N pt=tsim AR
2 _— 4 v \
PL=%" / (Awn)? dt (14) 3 AN
i=17t=0 o 0000 —
<] i f
. . . . . < '
wheren is the number of machines, ang,,, is the simulation Wi
. . . . . . 1 \
time. The values of these indices with the disturbances consic -0.010 ~ Y
ered are provided in Table XI. Itis clear that the values of thes:
indices with the proposed PSOPSSs are much smaller compar 0020 —
to gradient-based PSSs and GAPSSs. This demonstrates that 000 200 400 6.00 8.00 1000
settling time and speed deviations of all units are greatly reduce Time (s)

by applying the proposed PSOPSSs. Although the robustness
has been considered in gradient-based PSS design [17], theyHiail7.

System responses with disturbance 4.
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TABLE XI [71 M. A. Abido and Y. L. Abdel-Magid, “A hybrid neuro-fuzzy power
PERFORMANCEINDICES WITH DIFFERENT DISTURBANCES system stabilizer for multimachine power systemEEE Trans. Power
Syst, vol. 13, pp. 1323-1330, Nov. 1998.
. N Q a x oy [8] —, “Hybridizing rule-based power system stabilizers with genetic al-
3 g § § % 8 2 gorithms,”|IEEE Trans. Power Sysivol. 14, pp. 600-607, May 1999.
g &8 g a ] [9] E. Larsen and D. Swann, “Applying power system stabilizelS8EE
§' -4 “ 3 Trans. Power App. Systiol. PAS-100, pp. 3017-3046, 1981.
] [10] G. T. Tse and S. K. Tso, “Refinement of conventional PSS design in
Pl Ph multimachine system by modal analysilgEE Trans. Power Syswol.
Ph Ph | Ph Ph 8, pp. 598-605, 1993,
1 244 105 | 28 109 | 041 058 052 056 [11] P. Kundur, M. Klein, G. J. Rogers, and M. S. Zywno, “Application of
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