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Optimal Power Flow Using Tabu Search Algorithm
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This paper presents an e� cient and reliable tabu search (TS)–based approach to
solve the optimal power �ow (OPF) problem. The proposed approach employs
TS algorithm for optimal settings of the control variables of the OPF prob-
lem. Incorporation of TS as a derivative-free optimization technique in solving
OPF problem signi�cantly reduces the computational burden. One of the main
advantages of TS algorithm is its robustness to its own parameter settings as
well as the initial solution. In addition, TS is characterized by its ability to
avoid entrapment in local optimal solution and prevent cycling by using �exible
memory of search history. The proposed approach has been examined on the
standard IEEE 30-bus test system with diŒerent objectives and generator cost
curves. The results are promising and show the eŒectiveness and robustness of
the proposed approach.

Keywords optimal power �ow, tabu search algorithm, combinatorial opti-
mization

1. Introduction

In the past two decades, the problem of optimal power �ow (OPF) has received
much attention. It is of current interest of many utilities, and it has been marked
as one of the most operational needs. The OPF problem solution aims to optimize
a selected objective function, such as fuel cost via optimal adjustment of the power
system control variables, while at the same time satisfying various equality and
inequality constraints. The equality constraints are the power �ow equations, and
the inequality constraints are the limits on control variables and the operating
limits of power system{dependent variables. The problem control variables include
the generator real powers, the generator bus voltages, the transformer tap settings,
and the reactive power of switchable VAR sources, while the problem-dependent
variables include the load bus voltages, the generator reactive powers, and the line
�ows. Generally, the OPF problem is a large-scale, highly constrained, nonlinear,
nonconvex optimization problem.

Mathematically speaking, OPF problem is a large-scale combinatorial opti-
mization problem, known as the NP-complete problem [1]. It has been shown that
no optimal solution to a large-scale NP-complete problem can be obtained using
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aŒordable solution time. Besides, the OPF problem even has a nondiŒerentiable ob-
jective function, which induces further di� culties when seeking an optimal solution
to the problem.

A wide variety of optimization techniques have been applied to solving the OPF
problems [2{20], such as nonlinear programming (NLP) [2{6], quadratic program-
ming (QP) [7, 8], linear programming (LP) [9{11], Newton-based techniques [12{13],
sequential unconstrained minimization technique (SUMT) [14], and interior point
methods [15, 16]. Generally, NLP{based procedures have many drawbacks, such as
insecure convergence properties and algorithmic complexity. QP-based techniques
have some disadvantages associated with the piecewise quadratic cost approxima-
tion. Newton-based techniques have a drawback of the convergence characteristics
that are sensitive to the initial conditions, and they may even fail to converge due
to the inappropriate initial conditions. SUMT methods are known to exhibit nu-
merical di� culties when the penalty factors become extremely large. Although LP
methods are fast and reliable, they have some disadvantages associated with the
piecewise linear cost approximation. Interior point methods have been reported as
computationally e� cient; however, if the step size is not chosen properly, the sublin-
ear problem may have a solution that is infeasible in the original nonlinear domain
[15]. In addition, interior point methods, in general, suŒer from bad initial, termi-
nation, and optimality criteria and, in most cases, are unable to solve nonlinear
and quadratic objective functions [16]. For more discussions on these techniques,
we direct the reader to consult the comprehensive survey presented in [17].

Generally, most of these approaches apply sensitivity analysis and gradient-
based optimization algorithms by linearizing the objective function and the system
constraints around an operating point. Unfortunately, the problem of the OPF is
a highly nonlinear and a multimodal optimization problem (i.e., there exist more
than one local optimum). Hence, local optimization techniques, which are well elab-
orated, are not suitable for such a problem. Moreover, there is no local criterion to
decide whether a local solution is also the global solution. Therefore, conventional
optimization methods that make use of derivatives and gradients, in general, are
not able to locate or identify the global optimum. On the other hand, many mathe-
matical assumptions, such as convex, analytic, and diŒerential objective functions,
have to be given to simplify the problem; however, the OPF problem is an opti-
mization problem with, in general, nonconvex, nonsmooth, and nondiŒerentiable
objective functions. These properties become more evident and dominant if the
eŒects of the valve-point loading of thermal generators and the nonlinear behavior
of electronic-based devices, such as FACTS, are taken into consideration. Hence, it
becomes essential to develop optimization techniques that are e� cient to overcome
these drawbacks and handle such di� culties.

Recently, heuristic algorithms, such as genetic algorithms (GA) [18] and evolu-
tionary programming [19], have been proposed for solving the OPF problem. The
results reported were promising and encouraging for further research in this direc-
tion. In the last few years, TS algorithm appeared as another promising heuristic
algorithm for handling the combinatorial optimization problems [20{22]. TS has
been applied to various power system optimization problems with impressive suc-
cess [23{25].

In this paper, TS algorithm is proposed to solve the OPF problem. Unlike other
heuristic techniques, the advantage of using TS algorithm is the fact that it uses
a �exible memory of search history to prevent cycling and to avoid entrapment
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in local optima. Unlike the traditional optimization techniques, TS can easily deal
with nonconvex, nonsmooth, and nondiŒerentiable objective functions. It has been
theoretically proved that tabu search algorithm can yield global optimal solution
with probability one [22].

2. Problem Formulation

The optimal power �ow problem is to optimize the steady state performance of
a power system in terms of an objective function while satisfying several equality
and inequality constraints. Mathematically, the OPF problem can be formulated as
follows:

MinJ (x; u) (1)

subject to

g(x; u) = 0; (2)

h(x; u) µ 0; (3)

where

x is the vector of dependent variables consisting of slack bus power PG 1 , load
bus voltages VL , generator reactive power outputs QG , and transmission line
loadings Sl . Hence, x can be expressed as xT = [PG 1 ; VL ; QG ; Sl ] (i.e., xT =
[PG 1 ; VL 1 : : : VL N L

; QG 1 : : : QG N G
; Sl 1 : : : Sln l

]), where NL, NG, and nl are num-
ber of load buses, number of generators, and number of transmission lines,
respectively.

u is the vector of independent variables consisting of generator voltages VG , gen-
erator real power outputs PG except at the slack bus PG 1 , and transformer
tap settings T . Hence, u can be expressed as uT = [VG ; PG ; T ] (i.e., uT =
[VG 1 : : : VG N G

; PG 2 : : : PG N G
; T1: : : TN T ]), where NT is the number of the regu-

lating transformers.
J is the objective function to be minimized. Generally, for OPF problem, the ob-

jective function J is that of total fuel cost; i.e.,

J =
N GX

i=1

fi ($/h), (4)

where fi is the fuel cost of the ith generator.
g is the equality constraints and represent typical load �ow equations.
h is the system operating constraints that include:

(a) Generation constraints: Generator voltages, real power outputs, and
reactive power outputs are restricted by the lower and upper limits as
follows:

V min
G i

µ VG i
µ V max

G i
; i 2 NG; (5)

P min
G i

µ PG i
µ P max

G i
; i 2 NG; (6)

Qmin
G i

µ QG i
µ Qmax

G i
; i 2 NG: (7)
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(b) Transformer constraints: Transformer tap settings are restricted by the
lower and upper limits; i.e.,

T min
i µ Ti µ T max

i ; i 2 NT: (8)

(c) Security constraints: These include the constraints of voltages at load
buses and transmission line loadings as follows:

V min
L i

µ VL i
µ V max

L i
; i 2 NL; (9)

Sl i
µ Smax

l i
; i 2 nl: (10)

It is worth mentioning that the control variables are self-constrained. The hard
inequalities of PG 1 , VL , QG , and Sl can be incorporated in the objective function
as quadratic penalty terms. Therefore, the objective function can be augmented as
follows:

J =
N GX

i=1

fi + ¶ P (PG 1 ¡ P lim
G 1

)2 + ¶ V

N LX

i=1

(VL i
¡ V lim

L i
)2

+ ¶ Q

N GX

i=1

(QG i
¡ Qlim

G i
)2 + ¶ S

n lX

i=1

(Sl i
¡ Smax

l i
)2; (11)

where ¶ P , ¶ V , ¶ Q , and ¶ S are the penalty factors, and xlim is the limit value of the
dependent variable x given as

xlim =

(
xmax ; x > xmax

xmin; x < xmin
: (12)

3. Tabu Search Algorithm

3.1. Overview

Tabu search is a higher-level heuristic algorithm for solving combinatorial optimiza-
tion problems. It is an iterative improvement procedure that starts from any initial
solution and attempts to determine a better solution. TS was proposed in its present
form a few years ago [20{22]. It has now become an established optimization ap-
proach that is rapidly spreading to many new �elds. Together with other heuristic
search algorithms, such as GA, TS has been singled out as \extremely promising"
for the future treatment of practical applications [20]. Generally, the advantages of
TS over other traditional optimization techniques can be summarized as follows:

° TS is characterized by its ability to avoid entrapment in local optimal solution
and prevent cycling by using �exible memory of search history.

° TS uses payoŒ(performance index or objective function) information to guide
the search in the problem space. Therefore, it can easily deal with nonsmooth,
noncontinuous, and nondiŒerentiable objective functions that are the real-life
optimization problems. Additionally, this property relieves TS of assumptions
and approximations, which often are required by traditional optimization
methods for many practical optimization problems.
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° TS uses probabilistic transition rules to make decisions, not deterministic
rules. Hence, TS is a kind of stochastic optimization algorithm that can
search a complicated and uncertain area to �nd the global optimum. This
makes TS more �exible and robust than conventional methods.

Typically, the TS algorithm starts with no knowledge of the correct solution,
depending entirely on responses from interacting environment to arrive at optimal
solution.

3.2. TS Algorithm

The basic elements of TS are brie�y stated and de�ned as follows:

° Current solution, xcurrent : It is a set of the optimized parameter values at
any iteration. It plays a central role in generating the neighbor trial solutions.

° Moves: They characterize the process of generating trial solutions that are
related to xcurrent .

° Set of candidate moves, N (xcurrent ): It is the set of all possible moves
or trial solutions, xtrials, in the neighborhood of xcurrent . In case of contin-
uous variable optimization problems, this set is too large or even in�nite
set. Therefore, one could operate with a subset, S(xcurrent ), with a limited
number of trial solutions, nt, of this set (i.e., S » N and xtrial 2 S(xcurrent )).

° Tabu restrictions: These are certain conditions imposed on moves that
make some of them forbidden. These forbidden moves are listed to a certain
size and known as tabu. This list is called the tabu list. The reason behind
classifying a certain move as forbidden is basically to prevent cycling and
avoid returning to the local optimum just visited. The tabu list size plays a
great role in the search of high-quality solutions. The way to identify a good
tabu list size is to simply watch for the occurrence of cycling when the size is
too small and the deterioration in solution quality when the size is too large,
caused by forbidding too many moves.

° Aspiration Criterion (Level): It is a rule that overrides tabu restrictions
(i.e., if a certain move is forbidden by tabu restriction, the aspiration cri-
terion, when satis�ed, can make this move allowable). DiŒerent forms of
aspiration criteria are used in the literature [20{22]. The one considered here
is to override the tabu status of a move if this move yields a solution which
has better objective function, J , than the one obtained earlier with the same
move. The importance of using aspiration criterion is to add some �exibility
in the TS by directing it toward the attractive moves.

° Stopping Criteria: These are the conditions under which the search process
will terminate. In this study, the search will terminate if one of the following
criteria is satis�ed: (a) the number of iterations since the last change of
the best solution is greater than a prespeci�ed number; (b) the number of
iterations reaches the maximum allowable number.

The general algorithm of TS can be described in steps as follows:

Step 1: Set the iteration counter k = 0 and randomly generate an initial so-
lution xinitial. Set this solution as the current solution as well as the
best solution, xbest (i.e., xinitial = xcurrent = xbest).
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Step 2: Randomly generate a set of trial solutions, xtrials, in the neighborhood
of the current solution (i.e., create S(xcurrent )). Sort the elements of
S based on their objective function values in ascending order, as the
problem is a minimization one. Let us de�ne xi

trial as the ith trial
solution in the sorted set, 1 µ i µ nt. Here, x1

trial represents the best
trial solution in S in terms of objective function value associated with
it.

Step 3: Set i = 1. If J (xi
trial) > J (xbest), go to Step 4, else set xbest = xi

trial
and go to Step 4.

Step 4: Check the tabu status of xi
trial. If it is not in the tabu list, then put it

in the tabu list, set xcurrent = xi
trial, and go to Step 7. If it is in tabu

list, go to Step 5.
Step 5: Check the aspiration criterion of xi

trial. If satis�ed, then override the
tabu restrictions, update the aspiration level, set xcurrent = xi

trial, and
go to Step 7. If not, set i = i + 1 and go to Step 6.

Step 6: If i > nt, go to Step 7, else go back to Step 4.
Step 7: Check the stopping criteria. If one of them is satis�ed, then stop, else

set k = k + 1 and go back to Step 2.

The computational �ow of TS algorithm is shown in Figure 1.

3.3. Application of TS to OPF Problem

The above-described TS algorithm is excited by generating randomly initial values
of the optimized control variables (i.e., initial solution). Then, the objective function
is evaluated. The search for the optimal set of the control variables will continue
until one of the stopping criteria is satis�ed. In our implementation, the search will
terminate if (a) the number of iterations since the last change of the best solution
is greater than 50 iterations, or (b) the number of iterations reaches the maximum
allowable number of 500.

4. Numerical Results

The proposed TS-based OPF algorithm has been applied to the standard IEEE
30-bus test system shown in Figure 2. The system line and bus data are given in
the Appendix. The lower limit of voltage magnitude for all busses is 0.95 p.u. The
upper limit of voltage magnitude is 1.05 p.u. for slack bus and all load busses, while
the upper limit of all other generator busses is 1.1 p.u. The lower and upper limits
of all transformer taps are 0.9 and 1.1 p.u., respectively.

In order to demonstrate the eŒectiveness and robustness of the technique, sev-
eral cases with diŒerent objectives and generator cost curves have been considered
as follows.

4.1. Case (a): Quadratic Cost Curve

In this case, the generator cost curves are represented by quadratic functions as

fi = ai + biPG i
+ ciP

2
G i

($/h), (13)

where ai , bi , and ci are the cost coe� cients of the ith generator. The values of these
coe� cients are given in Table 1.
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Figure 1. The computational �ow of TS algorithm.

The technique was tested for several initial solutions. DiŒerent initial solutions
are generated by changing the seed of the random number generator. The variations
of the objective function with diŒerent initialization are shown in Figure 3. It is clear
that the technique converges to the optimal solution regardless of the initial one.
The optimal values of the control variables are given in Table 3. The total cost ob-
tained by the proposed technique is $802.29, while the best obtained after 100 runs
by evolutionary programming was $802.62 [19]. In addition, the nonlinear program-
ming solution is $802.40 [3]. This con�rms the superiority of the proposed technique
over the evolutionary programming and nonlinear programming techniques.
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Figure 2. Single-line diagram of IEEE 30-bus test system.

Table 1
Generator data and cost coe� cients for case (a)

Cost coe� cients
P min

G P max
G Qmin

G Smax
G

Bus (pu) (pu) (pu) (pu) a b c

1 0.50 2.00 ¡ 0.20 2.50 0.0 200 37.5
2 0.20 0.80 ¡ 0.20 1.00 0.0 175 175
5 0.15 0.50 ¡ 0.15 0.80 0.0 100 625
8 0.10 0.35 ¡ 0.15 0.60 0.0 325 83.4

11 0.10 0.30 ¡ 0.10 0.50 0.0 300 250
13 0.12 0.40 ¡ 0.15 0.60 0.0 300 250
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Figure 3. Objective function variation for diŒerent initialization of case (a).

4.2. Case (b): Quadratic Cost Curve with Sine Components

Approximating the cost curves by smooth quadratic functions results in some in-
accuracy due to neglecting the ripples produced by the valve point loading. In this
case, a sine component is superimposed to the cost curves of the generators at buses
1 and 2 to re�ect the valve-point loading eŒects [26] as

fi = ai + biPG i
+ ciP

2
G i

+ di j sin(ei(P
min
G i

¡ (PG i
)) j ($/h), (14)

where ai , bi , ci, di , and ei are the cost coe� cients of the ith generator. The values of
these coe� cients are given in Table 2 [19]. The cost curves of the other generators are
the same as in case (a). The technique was tested with diŒerent initializations. The
objective function variations are shown in Figure 4. It is evident that the technique
converges to the optimal solution regardless of the initial one. The optimal values
of control variables are given in Table 2. The total cost obtained by the proposed
technique is $919.715, while the minimum cost obtained by EP after 100 runs
was $919.89. It is clear that the proposed technique outperforms the evolutionary
programming.

Table 2
Generator cost coe� cients for case (b)

Cost coe� cients
P min

G P max
G

Bus (pu) (pu) a b c d e

1 0.50 2.00 150 200 16 50 6.3
2 0.20 0.80 25 250 100 40 9.8
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Figure 4. Objective function variation for diŒerent initialization of case (b).

4.3. Case (c): Voltage Pro�le Optimization

Bus voltage is one of the most important security and service quality indices. Con-
sidering only cost-based objectives in OPF problem may result in a feasible solution
that has unattractive voltage pro�le. In this case, a twofold objective function is
considered in order to minimize the fuel cost and improve voltage pro�le by min-
imizing the load bus voltage deviations from 1.0 per unit. The objective function
can be expressed as

J =
N GX

i=1

fi + w
X

i 2 N L

jvi ¡ 1:0j + ¶ P (PG 1 ¡ P lim
G 1

)2 + ¶ V

N LX

i=1

(VL i
¡ V lim

L i
)2

+ ¶ Q

N GX

i=1

(QG i
¡ Qlim

G i
)2 + ¶ S

n lX

i=1

(Sl i
¡ Smax

l i
)2; (15)

where w is a weighting factor. In this case, the generator cost curves are the same
as in case (a). The optimal settings of the control variables are given in Table 3.
The system voltage pro�le compared to that of case (a) is shown in Figure 5. It is
evident that the voltage pro�le is greatly improved compared to that of case (a).
Speci�cally, the total sum of voltage deviations is reduced from 0.7615 in case (a)
to 0.1405 in case (c). This gives a reduction ratio of 81.55%. The total generation
cost in this case, however, is slightly increased by 0.58% from that of case (a).

4.4. Case (d): Solution Quality Improvement

The results shown in Figures 2 and 3 emphasize that the proposed approach �nally
leads to the optimal control variable settings regardless of the initial one. Based on
this conclusion, the proposed approach can be used to improve the solution quality
of other methods. To demonstrate this point, case (a) is reconsidered with two
diŒerent initial solutions. First, the initial solution of the proposed approach is set
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Table 3
Optimal values of control variables

Initial Case (a) Case (b) Case (c)

P1 0.9880 1.7604 2.0000 1.7288
P2 0.8000 0.4876 0.3965 0.4894
P5 0.5000 0.2156 0.2042 0.2032
P8 0.2000 0.2205 0.1247 0.2448
P11 0.2000 0.1244 0.1000 0.1496
P13 0.2000 0.1200 0.1200 0.1222
V1 1.0500 1.0500 1.0500 1.0157
V2 1.0450 1.0389 1.0342 1.0034
V5 1.0100 1.0110 1.0118 1.0195
V8 1.0100 1.0198 1.0185 1.0095
V11 1.0500 1.0941 1.0868 1.0201
V13 1.0500 1.0898 1.0942 1.0430
T11 0.9780 1.0407 0.9993 1.0424
T12 0.9690 0.9218 1.0017 0.9016
T15 0.9320 1.0098 1.0184 0.9946
T36 0.9680 0.9402 0.9586 0.9448
J 900.76 802.29 919.72 806.98

Figure 5. System voltage pro�le for case (c).
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Figure 6. Improving the quality of a given optimal solution.

as the optimal solution of the evolutionary programming approach given in [19].
Second, the initial solution of the proposed approach is set as the optimal solution of
the nonlinear programming approach given in [3]. The quality improvement of the
given optimal solutions of other methods is shown in Figure 6. The results show the
capability of the proposed approach to improve the quality of the optimal solution
of other traditional methods. It is worth mentioning that the proposed approach
converges to the optimal solution of case (a) given in Table 3 with these diŒerent
initializations. It can be concluded that the proposed approach can be hybridized
with other methods in order to improve the optimal solution quality.

5. Conclusion

In this paper, a TS-based approach to optimal power �ow problem has been pre-
sented. The proposed approach has been tested and examined with diŒerent objec-
tives and diŒerent classes of generator cost functions to demonstrate its eŒectiveness
and robustness. The results using the proposed approach were compared to that
reported using evolutionary programming and nonlinear programming techniques.
It is clear that the proposed approach outperforms the classical and evolutionary
algorithms. The major advantage of the proposed approach is its robustness to
the initial solution. Therefore, the proposed approach can be used to improve the
solution quality obtained by other classical techniques.
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Appendix

Table A.1
IEEE 30-bus test system line data

Line From To R (p.u.) X (p.u.) B (p.u.) Rating (p.u.)

1 1 2 0.0192 0.0575 0.0264 1.30
2 1 3 0.0452 0.1852 0.0204 1.30
3 2 4 0.0570 0.1737 0.0184 0.65
4 3 4 0.0132 0.0379 0.0042 1.30
5 2 5 0.0472 0.1983 0.0209 1.30
6 2 6 0.0581 0.1763 0.0187 0.65
7 4 6 0.0119 0.0414 0.0045 0.90
8 5 7 0.0460 0.1160 0.0102 0.70
9 6 7 0.0267 0.0820 0.0085 1.30

10 6 8 0.0120 0.0420 0.0045 0.32
11 6 9 0.0000 0.2080 0.0000 0.65
12 6 10 0.0000 0.5560 0.0000 0.32
13 9 11 0.0000 0.2080 0.0000 0.65
14 9 10 0.0000 0.1100 0.0000 0.65
15 4 12 0.0000 0.2560 0.0000 0.65
16 12 13 0.0000 0.1400 0.0000 0.65
17 12 14 0.1231 0.2559 0.0000 0.32
18 12 15 0.0662 0.1304 0.0000 0.32
19 12 16 0.0945 0.1987 0.0000 0.32
20 14 15 0.2210 0.1997 0.0000 0.16
21 16 17 0.0824 0.1923 0.0000 0.16
22 15 18 0.1070 0.2185 0.0000 0.16
23 18 19 0.0639 0.1292 0.0000 0.16
24 19 20 0.0340 0.0680 0.0000 0.32
25 10 20 0.0936 0.2090 0.0000 0.32
26 10 17 0.0324 0.0845 0.0000 0.32
27 10 21 0.0348 0.0749 0.0000 0.32
28 10 22 0.0727 0.1499 0.0000 0.32
29 21 22 0.0116 0.0236 0.0000 0.32

(continued)
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Table A.1
(Continued )

Line From To R (p.u.) X (p.u.) B (p.u.) Rating (p.u.)

30 15 23 0.1000 0.2020 0.0000 0.16
31 22 24 0.1150 0.1790 0.0000 0.16
32 23 24 0.1320 0.2700 0.0000 0.16
33 24 25 0.1885 0.3292 0.0000 0.16
34 25 26 0.2544 0.3800 0.0000 0.16
35 25 27 0.1093 0.2087 0.0000 0.16
36 28 27 0.0000 0.3960 0.0000 0.65
37 27 29 0.2198 0.4153 0.0000 0.16
38 27 30 0.3202 0.6027 0.0000 0.16
39 29 30 0.2399 0.4533 0.0000 0.16
40 8 28 0.0636 0.2000 0.0214 0.32
41 6 28 0.0169 0.0599 0.0065 0.32

Table A.2
IEEE 30-bus test system bus data

Bus P (MW) Q (MVAR) Bus P (MW) Q (MVAR)

1 0.00 0.00 16 3.50 1.80
2 21.70 12.70 17 9.00 5.80
3 2.40 1.20 18 3.20 0.90
4 7.60 1.60 19 9.50 3.40
5 94.20 19.00 20 2.20 0.70
6 0.00 0.00 21 17.50 11.20
7 22.80 10.90 22 0.00 0.00
8 30.00 30.00 23 3.20 1.60
9 0.00 0.00 24 8.70 6.70

10 5.80 2.00 25 0.00 0.00
11 0.00 0.00 26 3.50 2.30
12 11.20 7.50 27 0.00 0.00
13 0.00 0.00 28 0.00 0.00
14 6.20 1.60 29 2.40 0.90
15 8.20 2.50 30 10.60 1.90


