
A NOVEL MULTIOBJECTIVE EVOLUTIONARY ALGORITHM 
FOR OPTIMAL REACTIVE POWER DISPATCH PROBLEM  

 
M. A. Abido    J. M. Bakhashwain 

 
Electrical Engineering Department 

King Fahd University of Petroleum & Minerals 
Dhahran 31261, Saudi Arabia 

 
 

ABSTRACT 
 
In this paper, a novel multiobjective evolutionary 
algorithm for optimal reactive power (VAR) dispatch 
problem is presented. The optimal VAR dispatch 
problem is formulated as a nonlinear constrained 
multiobjective optimization problem where the real 
power loss and the bus voltage deviations are to be 
minimized simultaneously. A new Strength Pareto 
Evolutionary Algorithm (SPEA) based approach is 
proposed to handle the problem as a true multiobjective 
optimization problem with competing and non-
commensurable objectives. A hierarchical clustering 
algorithm is imposed to provide the decision maker with 
a representative and manageable Pareto-optimal set. The 
results demonstrate the capabilities of the proposed 
approach to generate true and well-distributed Pareto-
optimal nondominated solutions in one single run. The 
results also show the superiority of the proposed 
approach and confirm its potential to solve the 
multiobjective VAR dispatch problem. 
 

1. INTRODUCTION 
 
In the past decade, the problem of reactive power control 
for improving economy and security of power system 
operation has received much attention. Generally, the 
load bus voltages can be maintained within their 
permissible limits by reallocating reactive power 
generations in the system. This can be achieved by 
adjusting transformer taps, generator voltages, and 
switchable VAR sources. In addition, the system losses 
can be minimized via redistribution of reactive power in 
the system. Therefore, the problem of the reactive power 
dispatch can be optimized to improve the voltage profile 
and minimize the system losses as well. 

Several methods to solve the optimal reactive power 
dispatch problem have been proposed in the literature. 
Generally, there are three approaches to solve this 
complex problem. The first approach employs nonlinear 
programming technique [1]. However, nonlinear 
programming based procedures have many drawbacks, 
such as insecure convergence properties, long execution 
time, and algorithmic complexity. The second approach 
uses sensitivity analysis and gradient-based optimization 

algorithms by linearizing the objective function and the 
system constraints around an operating point [2]. 
However, the gradient-based methods are susceptible to 
be trapped in local minima and the solution obtained will 
not be the optimal one. The third approach utilizes the 
heuristic methods to search for the optimal solution in the 
problem space [3]. These heuristic methods have been 
applied to solve the optimal VAR dispatch problem with 
impressive success.  

The multiobjective VAR dispatch problem was 
converted to a single objective problem by linear 
combination of different objectives as a weighted sum 
[4]. Unfortunately, this requires multiple runs as many 
times as the number of desired Pareto-optimal solutions. 
Furthermore, this method cannot be used to find 
Pareto-optimal solutions in problems having a 
non-convex Pareto-optimal front. To avoid this difficulty, 
the ε-constraint method for multiobjective optimization 
was presented in [5]. This method is based on 
optimization of the most preferred objective and 
considering the other objectives as constraints bounded 
by allowable levels ε. These levels are then altered to 
generate the entire Pareto-optimal set. The most obvious 
weaknesses of this approach are that it is time-consuming 
and tends to find weakly nondominated solutions. 

On the contrary, the studies on evolutionary 
algorithms, over the past few years, have shown that 
these methods can be efficiently used to eliminate most 
of the difficulties of classical methods [6-7]. Since they 
use a population of solutions in their search, multiple 
Pareto-optimal solutions can, in principle, be found in 
one single run. The multiobjective evolutionary 
algorithms have been implemented to 
environmental/economic power dispatch problem with 
impressive success [8] 

In this paper, the Strength Pareto Evolutionary 
Algorithm (SPEA) based approach is proposed for 
solving the multiobjective VAR dispatch optimization 
problem. The problem is formulated as a nonlinear 
constrained multiobjective optimization problem where 
the real power loss and the bus voltage deviations are 
treated as competing objectives. A hierarchical clustering 
technique is implemented to provide the power system 
operator with a representative and manageable Pareto-
optimal set. The effectiveness and potential of the 
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proposed approach to solve the multiobjective VAR 
dispatch problem are demonstrated. 
 

2. PROBLEM FORMULATION 
 
The optimal VAR dispatch problem is to optimize the 
steady state performance of a power system in terms of 
one or more objective functions while satisfying several 
equality and inequality constraints. Generally the 
problem can be formulated as follows. 
 
2.1.  Objective Functions 
 
2.1.1.  Real Power Loss (PL) 
This objective is to minimize the real power loss in 
transmission lines that can be expressed as 
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where nl is the number of transmission lines; gk is the 
conductance of the kth line; iiV δ∠  and jjV δ∠  are the 

voltages at end buses i and j of the kth line respectively. 
 
2.1.2.  Voltage Deviation (VD) 
This objective is to minimize the deviations in voltage 
magnitudes at load buses that can be expressed as 
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where NL is the number of load buses. 
 
2.2.  Problem Constraints 
 
2.2.1.  Equality Constraints  
These constraints represent load flow equations as: - 
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where i = 1,2,…,NB; NB is the number of buses; PG and 
QG are the generator real and reactive power respectively; 
PD and QD are the load real and reactive power 
respectively; Gij and Bij are the transfer conductance and 
susceptance between bus i and bus j respectively.  
 
2.2.2.  Inequality Constraints:   
These constraints represent the system operating 
constraints such as generator voltages VG; generator 
reactive power outputs QG; transformer tap T; Switchable 
VAR compensations QC; load bus voltages VL; and 
transmission line loadings Sl. These constraints can be 
formulated as follows. 

NGiVVV
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NCiQQQ cicici ,...,1maxmin =≤≤    ,   (8) 

NLiVVV
iii LLL ,...,1maxmin =≤≤    ,   (9) 

nliSS
ii ll ,...,1max =≤    ,                (10) 

where NG,  NT,  and  NC are the number of generators, 
transformers, and switchable VAR sources, respectively. 

Aggregating the objectives and constraints, the 
problem can be mathematically formulated as a nonlinear 
constrained multiobjective optimization problem as 
follows. 

 
Minimize [PL(x,u), VD(x,u)]                (11) 
Subject to: 
g(x,u) = 0                  (12) 
h(x,u) ≤ 0                  (13) 
 

where: 
x: is the vector of dependent variables consisting of load 

bus voltages VL, generator reactive power outputs QG, 
and transmission line loadings Sl. Hence, x can be 
expressed as 

] ... , ... , ...[x
111 nlNGNL llGGLL

T SSQQVV=                (14) 

u: is the vector of control variables consisting of 
generator voltages VG, transformer tap settings T, and 
shunt VAR compensations Qc. Hence, u can be 
expressed as 

]..., ... , ...[u 111 NCNG ccNTGG
T QQTTVV=                (15) 

g:   is the equality constraints. 
h:   is the inequality constraints. 
 

3. THE PROPOSED APPROACH 
 
3.1.  Overview 
 
Recently, the studies on evolutionary algorithms have 
shown that these algorithms can be efficiently used to 
eliminate most of the difficulties of classical methods that 
can be summarized as: 
• An algorithm has to be applied many times to find 

multiple Pareto-optimal solutions. 
• Most algorithms demand some knowledge about the 

problem being solved. 
• Some algorithms are sensitive to the shape of the 

Pareto-optimal front. 
• The spread of Pareto-optimal solutions depends on 

efficiency of the single objective optimizer. 
In general, the goal of a multiobjective optimization 

algorithm is not only guide the search towards the 
Pareto-optimal front but also maintain population 
diversity in the set of the nondominated solutions. 

  
3.2.  Strength Pareto Evolutionary Algorithm (SPEA) 
 
The SPEA algorithm has the following steps [7]. 
Step 1 (Initialization): Generate an initial population 
and create an empty external Pareto-optimal set. 
Step 2 (External set updating): The external Pareto-
optimal set is updated as follows.  
(a) Search the population for the nondominated 

individuals and copy them to the external Pareto set.  
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(b) Search the external Pareto set for the nondominated 
individuals and remove all dominated solutions.  

(c) If the size of the Pareto set exceeds the maximum 
size, reduce the set by means of clustering. The 
average linkage based hierarchical clustering 
algorithm [9] is implemented in this study. 

Step 3 (Fitness assignment): Calculate the fitness values 
of individuals in both external Pareto set and the 
population as follows. 
(a) Assign a real value )1,0[∈s  called strength for each 

individual in the Pareto optimal set. The strength of 
an individual is proportional to the number of 
individuals covered by it. The strength of a Pareto 
solution is at the same time its fitness. 

(b) The fitness of each individual in the population is the 
sum of the strengths of all external Pareto solutions 
by which it is covered. In order to guarantee that 
Pareto solutions are most likely to be produced, a 
small positive number is added to the resulting value. 

Step 4 (Selection): Combine the population and the 
external set individuals. Select two individuals at random 
and copy the better one to the mating pool. 
Step 5 (Crossover and Mutation): Perform the 
crossover and mutation operations according to their 
probabilities to generate the new population. 
Step 7 (Termination): Check for stopping criteria. If any 
one is satisfied then stop else copy new population to old 
population and go to Step 2. In this study, the search will 
terminate if the generation counter exceeds its maximum. 
 

4. RESULTS AND DISCUSSIONS 
 
In this study, the proposed approach was tested on the 
standard IEEE 30-bus 6-generator test system. The 
single-line diagram of the IEEE test system is shown in 
Fig. 1 and the detailed data are given in [10]. The system 
has 6 generators and 4 transformers and, therefore, the 
number of the optimized variables is 10 in this prolem. 
The lower voltage magnitude limits at all buses are 0.95 
pu and the upper limits are 1.1 pu for generator buses 2, 
5, 8, 11, and 13, and 1.05 pu for the remaining buses 
including the reference bus 1. The lower and upper limits 
of the transformer tappings are 0.9 and 1.1 pu 
respectively. The initial settings of the control variables 
and the initial values of objective functions are given in 
Table 1. 

At first, the PL and VD objectives are optimized 
individually in order to explore the extreme points of the 
trade-off surface and evaluate the diversity characteristics 
of the Pareto optimal solutions obtained by the proposed 
approach. The best results of PL and VD functions when 
optimized individually are given in Table 1.  

The problem was handled as a multiobjective 
optimization problem where both power loss and voltage 
deviations were optimized simultaneously with the 
proposed approach. The diversity of the Pareto optimal 
set over the trade-off surface is shown in Fig. 2. It is 
worth mentioning that the Pareto optimal set has 30 
nondominated solutions generated by a single run. Out of 

them, two nondominated solutions that represent the best 
PL and best VD are given in Table 2.  
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Figure 1: Single-line diagram of IEEE 30-bus test 
system 
 

Table 1: The best solutions for PL and VD optimized 
individually 

 Initial [10] Best PL Best VD 
VG1 1.050 1.050 1.009 
VG2 1.045 1.041 1.006 
VG5 1.010 1.018 1.021 
VG8 1.010 1.017 0.998 
VG11 1.050 1.084 1.066 
VG13 1.050 1.079 1.051 
T6-9 0.978 1.002 1.093 
T6-10 0.969 0.951 0.904 
T4-12 0.932 0.990 1.002 
T27-28 0.968 0.940 0.941 

PL (MW) 5.3786 5.1167 5.8889 
VD (pu) 0.4993 0.7438 0.1435 
 
For completeness and comparison purposes, the 

problem was also treated as a single objective 
optimization problem by linear combination of PL and 
VD objectives as follows:- 

VDwP wMinimize  L ××−+× λ)1(                (16) 
where the scaling factor λ was selected as 0.25 and w is a 
weighting factor. To generate 30 nondominated solutions, 
the algorithm was applied 30 times with varying w as a 
random number w = rand[0,1]. The best PL and best VD 
solutions are given in Table 2. It is clear that the 
proposed approach gives better results in one single run. 

Table 3 gives a comparison between the results of 
single objective optimization and that of the proposed 
multiobjective approach. It is clear that the results of the 
proposed approach are almost identical to that of 
individual optimization. It can be concluded that the 
proposed approach is capable of exploring more efficient 
and non-inferior solutions. This demonstrates that the 
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search of the proposed approach span over the entire 
trade-off surface. In addition, the close agreement of the 
results shows clearly the capability of the proposed 
approach to handle multiobjective optimization problems 
as the best solution of each objective along with a 
manageable set of nondominated solutions can be 
obtained in one single run. 
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Figure 2: Pareto-optimal front of the proposed approach 

in a single run 
 
Table 2: Test results of best PL and VD of the proposed 

approach 
 Proposed Multiobjective Approach Single Objective 
 Best PL Best VD Best PL Best VD 

VG1 1.050 1.045 1.021 
VG2 1.045 1.042 1.021 
VG5 1.024 1.020 1.021 
VG8 1.025 1.022 1.002 
VG11 1.073 1.057 1.025 
VG13 1.088 1.061 1.030 
T6-9 1.053 1.074 1.045 
T6-10 0.921 0.931 0.909 
T4-12 1.014 1.019 0.964 
T27-28 0.964 

1.016 
1.012 
1.018 
1.003 
1.061 
1.034 
1.090 
0.907 
0.970 
0.943 0.966 0.941 

PL (MW) 5.1168 5.6882 5.1630 5.6474 
VD (pu) 0.6291 0.1442 0.3142 0.1446 

 
Table 3: Comparison of best solutions of PL and VD 

 Individual 
Optimization 

Proposed 
Multiobjective 

Single 
Objective 

PL (MW) 5.1167 5.1168 5.1630 
VD (pu) 0.1435 0.1442 0.1446 

 
5. CONCLUSION 

 
In this paper, a novel approach based on the Strength 

Pareto Evolutionary algorithm has been presented and 
applied to multiobjective VAR dispatch optimization 
problem. The problem has been formulated as 
multiobjective optimization problem with competing real 
power loss and bus voltage deviations objectives. A 
hierarchical clustering technique is implemented to 
provide the operator with a representative and 

manageable Pareto-optimal set without destroying the 
characteristics of the trade-off front. The results show 
that the proposed approach is efficient for solving 
multiobjective VAR dispatch problem where multiple 
Pareto-optimal solutions can be found in one simulation 
run. In addition, the nondominated solutions obtained are 
well distributed and have satisfactory diversity 
characteristics as the proposed approach has an 
embedded diversity-preserving mechanism. Since the 
proposed approach does not impose any limitation on the 
number of objectives, its extension to include more 
objectives is a straightforward process. 
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