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Abstract 
        

      This paper presents an artificial neural network (ANN) for 
online tuning of a genetic based proportional-integral (PI) 
controller for interior permanent magnet synchronous motor 
(IPMSM) drive. The proposed controller is developed for 
accurate speed control of the IPMSM drive under system 
disturbances. In this work, initially different operating 
conditions are obtained based on motor dynamics incorporating 
various uncertainties. At each operating condition genetic 
algorithm (GA) is used to optimize PI controller parameters in a 
closed loop vector control scheme. In the optimization procedure 
a performance index is developed to reflect the minimum speed 
deviation, minimum settling time and zero steady-state error. A 
radial basis function network (RBFN) is utilized for online 
tuning of the PI controller parameters to ensure optimum drive 
performance under different disturbances. The proposed 
controller is successfully implemented in laboratory using a 
digital signal processor board DS1102 for a 1 hp IPMSM. The 
efficacy of the proposed controller is verified by simulation as 
well as experimental results at different dynamic operating 
conditions.  
 
Keywords: Interior permanent magnet motor, artificial neural 
network, genetic algorithm, PI controller, digital signal processor 
and vector control. 
 
1. Introduction 
 

   Recent developments in microprocessors, high speed power 
electronic devices, magnetic materials and control algorithms 
have enabled modern ac motor drives to face challenging 
high efficiency and high performance requirements in the 
industrial sector.  Among ac drives, the interior permanent 
magnet synchronous motor (IPMSM) has been becoming 
popular owing to its high torque to current ratio, large power 
to weight ratio, high efficiency, high power factor and 
robustness [1]. These features are due to the incorporation of 
high energy rare-earth alloys such as Neodymium-Iron-Boron 
in its construction.  Especially, the interior permanent magnet 
synchronous motor (IPMSM) which has magnets buried in 
the rotor core exhibit certain good properties, such as, 
mechanically robust rotor construction, a rotor physically 
non-saliency and small effective air gap.  The rotors of these 
machines have a complex geometry to ensure optimal use of 
the expensive permanent magnet material while maintaining 
a high magnetic field in the air-gap.              
       Fast and accurate speed response, quick recovery of 
speed from any disturbances and insensitivity to parameter 
variations are some of the important criteria of the high 

performance drive systems used in robotics, rolling mills, 
machine tools etc. In order to achieve high performance, the 
vector control of IPMSM drive is employed [2]. However, 
the controller design of such system plays crucial role in the 
system performance. The decoupling characteristics of vector 
controlled IPMSM are adversely affected by the parameter 
changes in the motor.  Traditionally, control issues are 
handled by the conventional PI controller and various 
adaptive controllers such as model reference adaptive 
controller, sliding mode controller, variable structure 
controller have been widely utilized as speed controllers in 
the IPMSM drive. However, the difficulties of obtaining the 
exact d-q axis reactance parameters of the IPMSM leads to 
cumbersome design approach for these controllers. Moreover, 
the conventional fixed gain PI controller is very sensitive to 
step change of command speed, parameter variations and 
load disturbance [3]. Again, precise speed control of an 
IPMSM drive becomes a complex issue due to nonlinear 
coupling among its winding currents and the rotor speed as 
well as the nonlinearity present in the electromagnetic 
developed torque due to magnetic saturation of the rotor core 
[4]. Therefore, there exists a need to tune the PI controller 
parameters online to ensure optimum drive performance over 
a wide range of operating conditions. In the present work, as 
an artificial neural network (ANN) a radial basis function 
network (RBFN) is utilized for this purpose. The ability of 
ANN to handle nonlinear system uncertainties such as step 
change in command speed, load impact, saturation and 
parameter variations is well-known [5]. Over the last decade, 
ANN are used in modeling and control techniques for many 
real industrial processes [3,6-11]. Most of these works are 
dealt with dc motor [3,6-8]. Recently, some works are 
reported on ANN based permanent magnet synchronous 
motor drive [9-11]. However, the simulation and 
experimental results published in these works [9-11] are not 
very much satisfactory in terms of disturbance rejection such 
insensitive to load variations, parameter variations etc.  In 
this work, GA is used to optimize the parameters of ANN 
structure, which added a new feature to get a predictive and 
better performance.                 
      This paper presents the detailed laboratory 
implementation and performance investigation of a novel 
speed control scheme using an ANN for online tuning of a 
genetic based PI controller for IPMSM drive. In developing 
the proposed controller, the PI controller parameters are 
optimized by GA at all possible operating conditions in a 
closed loop vector control scheme. In the optimization 
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procedure a performance index is developed to reflect the 
minimum speed deviation, minimum settling time and zero 
steady-state error. Then a radial basis function network 
(RBFN) is utilized for online tuning of the PI controller 
parameters to ensure optimum drive performance under 
different disturbances and operating conditions. The 
laboratory implementation of the proposed controller is done 
using a digital signal processor (DSP) board DS 1102 for a 1 
hp IPMSM. The efficacy of the proposed controller is 
verified by simulation as well as experimental results at 
different dynamic operating conditions.  
 
2. Motor Dynamics 
 

     The mathematical model of an IPMSM drive can be 
described by the following equations in a synchronously 
rotating rotor d-q reference frame as, 
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where, qd vv ,  = d- and q-axis stator voltages;  

qd ii ,  = d- and q-axis stator currents; 
R   = stator per phase resistance;  

qd LL ,  = d- and q-axis stator inductances; 

Le TT ,   = electromagnetic and load torques;  

mJ  = moment of inertia of the motor and load; 

mB  = friction coefficient of the motor;  
P  = number of poles of the motor; 

rω  = rotor speed in angular frequency; 
p  = differential operator (=d/dt); 

fψ  = rotor magnetic flux linking the stator. 

 
3. Control Principle 
 

       According to the motor model given in equations (1-3), it 
can be seen that the speed control can be achieved by 
controlling the q-axis component qv of the supply voltage as 

long as the d-axis current di  is maintained at zero.  This 
results in the electromagnetic torque being directly 
proportional to the current qi .  Since 0=di , the d-axis flux 
linkage depends only on the rotor permanent magnets. The 
resultant IPMSM model can be represented as, 
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       In the proposed approach, various operating conditions 
are generated randomly taking into account different drive 

uncertainties based on motor dynamics given by Eqs.(4)-(7) 
and the machine parameters given in Table-I.. 
 
 
 

Motor rated power 3-phase, 1 hp 
Rated voltage 208 V 
Rated current 3 A 
Rated frequency 60 Hz 
Pole pair number (P) 2 
d-axis inductance, dL  42.44 mH 

q-axis inductance, qL  79.57 mH 

Stator resistance, R 1.93 Ω  
Motor inertia, mJ  0.003 kgm2 

Friction coefficient, mB  0.001 Nm/rad/sec 

Magnetic flux constant, fψ  0.311 volts/rad/sec 

 
At each operating condition genetic algorithm (GA) is used to 
optimize PI controller parameters in a closed loop vector 
control scheme. In optimization procedure a performance 
index is developed to reflect the minimum speed deviation, 
minimum settling time and zero steady-state error. A radial 
basis function network (RBFN) is utilized for online tuning 
of the PI controller parameters to ensure optimum drive 
performance under different disturbances. In the following 
sections, the GA and RBFN are briefly described. 
 
4. Genetic Algorithm 
 

        Genetic algorithms are exploratory search and 
optimization procedures that were devised on the principles 
of natural evolution and population genetics [12]. Unlike 
other optimization techniques, GA work with a population of 
individuals represented by bit strings and modify the 
population with random search and competition. The 
advantages of GA over other traditional optimization 
techniques can be summarized as follows: 
• GA search the problem space using a population of trials 

representing possible solutions to the problem, not a 
single point, i.e. GA have implicit parallelism. This 
property ensures GA to be less susceptible to getting 
trapped on local minima. 

• GA use a performance index assessment to guide the 
search in the problem space. 

• GA use probabilistic rules to make decisions. 
In general, GA include operations such as reproduction, 
crossover, and mutation. Reproduction is a process in which a 
new generation of population is formed by selecting the 
fittest individuals in the current population. Crossover is the 
most dominant operator in GA. It is responsible for producing 
new offsprings by selecting two strings and exchanging 
portions of their structures. The new offsprings may replace 
the weaker individuals in the population. Mutation is a local 
operator, which is applied with a very low probability. Its 
function is to alter the value of a random position in a string. 
 
A. Real-Coded Genetic Algorithm (RCGA) 
 

Table-I: Machine parameters 
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      Due to difficulties of binary representation when dealing 
with continuous search space with large dimension, the 
proposed approach has been implemented using real-coded 
genetic algorithm (RCGA). A decision variable xi is 
represented by a real number within its lower limit ai and 
upper limit bi, i.e. xi ∈ [ai,bi]. 
The RCGA crossover and mutation operators are described as 
follows:  
  
A.1. Crossover  
       A blend crossover operator has been employed in this 
study. This operator starts by choosing randomly a number 
from the interval )](),([ iiiiii xyyxyx −+−− αα , where 
xi and yi are the ith parameter values of the parent solutions 
and xi < yi. To ensure the balance between exploitation and 
exploration of the search space, α = 0.5 is selected.  
 
A.2. Mutation  
       The non-uniform mutation operator has been employed 

in this study. In this operator, the new value '
ix  of the 

parameter xi after mutation at generation t is given as 
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where τ is a binary random number, r is a random number r 
∈ [0,1], gmax is the maximum number of generations, and β is 
a positive constant chosen arbitrarily. In this study, β = 5 was 

selected. This operator gives a value '
ix  ∈ [ai,bi] such that the 

probability of returning a value close to xi increases as the 
algorithm advances. This makes uniform search in the initial 
stages where t is small and very locally at the later stages.  
     For the optimal settings of PI controller parameters, 
following quadratic performance index J is considered: 

J  = [ ( )]kT ks
k

L

∆ω 2
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In the above index, the speed deviation ∆ω(k) is weighted by 
the respective time kTs. The index J is selected because it 
reflects small settling time, small steady state error, and small 
overshoots. The tuning parameters are adjusted so as to 
minimize the index J. 
 
B. The Computational Flow 
 

     Applying GA to the problem of the optimal design of PI 
controller involves repetitively performing the following two 
basic steps:  
1. The objective function value must be calculated for each of 
the strings in the current population. To do this, the FLC 
parameters must be decoded from each string in the 
population and the system is simulated to obtain the objective 
function value. 2. GA operations are applied to produce the 
next generation of the strings. 
These two steps are repeated from one generation to another 
until the population has converged. The computational flow 
of the optimization problem can be shown in Fig. 1.  

5. Radial Basis Function Network (RBFN) 
 

     Like most feed forward networks, RBFN has three layers, 
namely, an input layer, a hidden layer, and an output layer 
[13]. A schematic diagram of the specific RBFN with 2 
inputs and 2 outputs is given in Fig.2. The hidden layer nodes 
are the RBF units. Each node in this layer contains a 
parameter vector called a center. The node calculates the 
Euclidean distance between the center and the network input 
vector, and passes the result through a nonlinear function 
Φ(.). The output layer is essentially a set of linear combiners. 
For a general n-input and m-output RBFN structure, the ith 
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Fig. 2. Schematic diagram of RBFN 

Fig.1. Computational flow chart 
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output yi due to input vector x, x=[x1, . . ., xn]
T, can be 

expressed as, 

( )y i i ji j j
j

M s

= + −
=

∑θ θ σ0
1

Φ || || ,x c   (11) 

where Ms is the number of hidden units, cj and σj are the 
center and the width of the jth hidden unit respectively, θji 
represents the weight between the jth hidden unit and the ith 
output unit, and θ0i is the bias term of the ith output unit. In 
this study, Φ(.) is chosen to be gaussian activation  function, 
that is, 

( )Φ z z, exp( / )σ σ= − 2 22    (12) 
For learning purpose the orthogonal least square (OLS) 
method is used in this work [13]. 
 
6. Laboratory Implementation 
 

      The block diagram of the closed loop vector control 
scheme of IPMSM incorporating the proposed RBFN 
controller is shown in Fig. 3. The drive is experimentally 
implemented using digital signal processor (DSP) board 
DS1102 through both hardware and software [14].  
 

A. Hardware Implementation  
     The DSP board is installed in a PC with uninterrupted 
communication capabilities through dual-port memory. The 
hardware schematic for real-time implementation of the 
proposed IPMSM drive is shown in Fig.4. The DS1102 board 
is based on a Texas Instrument (TI) TMS320C31, 32-bit 
floating point digital signal processor. The DSP has been 
supplemented by a set of on-board peripherals used in digital 
control systems, such as A/D, D/A converters and 
incremental encoder interfaces. The DS 1102 is also equipped 
with a TI TMS320P14, 16-bit micro controller DSP that acts 
as a slave processor and is sued for some special purposes. In 
this work, slave processor is used for digital I/O 
configuration. . In this work, slave processor is used for 
digital I/O configuration. The actual motor currents are 
measured by the Hall-effect sensors which have good 
frequency response and fed to the DSP board through A/D 
converter. As the motor neutral is isolated, only two phase 
currents are fed back and the other phase current is calculated 
from them. The rotor position is measured by an optical 
incremental encoder which is mounted at the rotor shaft end. 
Then it is fed to the DSP board through encoder interface. 
The encoder generates 4096 pulses per revolution. By using a 
4-fold pulse multiplication the number of pulses is increased 
to 4x4096 in order to get better resolution. A 24-bit position 
counter is used to count the encoder pulses and is read by a 
calling function in the software.  
          The motor speed is calculated from the rotor position 
by backward difference interpolation. A digital moving 
average filter is used to remove the noise from the speed 
signal. The calculated actual motor speed is used to calculate 
the torque component of the current iq

* using the FLC 
algorithm. The command a-b-c phase currents are generated 
from iq

* using inverse Park’s transformation. In order to 
implement the vector control algorithm, the hysteresis 
controller is used as current controllers. The hysteresis  
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Fig.5. Flow chart of the software for the complete IPMSM drive. 

Fig.3. Block diagram of the RBFN based controller for IPMSM drive. 
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current controller compares the command currents with the 
corresponding actual motor currents and generates the logic 
signals, which act as firing pulses for the inverter switches. 
Thus, these six PWM logic signals are the output of the DSP 
board and fed to the base drive circuit of the inverter power 
module. The D/A channels are used to capture the necessary 
output signals in digital storage oscilloscope. 
      
B. Software Implementation 
     The complete IPMSM drive is implemented through 
software by developing a program in high level ANSI ‘C’ 
programming language. The programming algorithm is 
summarized by the flow chart shown in Fig. 5.  The program 
is compiled by the TI ‘C’ compiler and then the program is 
downloaded to the DSP controller board. The sampling 
frequency for experimental implementation of the proposed 
IPMSM drive system is 6.67 kHz. 
 
7. Simulation and Experimental Results 
 

       Several tests were performed to evaluate the performance 
of the proposed RBFN based IPMSM drive system both in 
simulation and experiment. The speed, stator current and 
torque responses are observed under different operating 
conditions such as sudden change in command speed, step 
change in load, parameter variations, etc. Sample results are 
presented below. The complete drive has been simulated 
using Matlab/Simulink [15].  
        The simulated motor speed and current responses are 
shown in Figs. 6(a)-(c) to see the starting performance as well 
as the response with a load disturbance of the drive. The drive 
system is started at a constant load of 1 Nm with the speed 
reference set at 1800 rpm (188.5 rad/sec).  It can be seen from 
Fig. 5(a) that the actual speed converges to the reference 
value within 0.1 seconds without any overshoot and 
undershoot and with zero steady-state error. At t=0.3 seconds, 
a load torque of 2 Nm is applied to the motor shaft in a 
stepwise manner.  The actual speed does not change during 
the disturbance while the stator current swiftly reaches to its 
new value corresponding to the load applied. This shows the 
capability of new controller to start from standstill condition 
to the rated speed as well as to reject the disturbance.  
      The experimental starting performance including speed, 
torque and stator current ia are shown in Figs. 7(a)and 7(b), 
respectively. It is shown that the proposed drive is also 
capable of following the command speed very quickly with 
zero steady-state error and without any overshoot or 
undershoot in a real-time situation.  Another experimental 
speed and the corresponding torque responses are shown in 
Fig. 8(a) & 8(b), respectively, for a step change in load 
torque. It is found that the drive is insensitive with load 
disturbance. Figure 8 shows an experimental speed response 
for a sudden change in command speed. It is evident that the 
proposed drive can adapt itself with speed disturbance. Fig.10 
shows another speed response with doubled stator resistance. 
The resistances are inserted externally to the stator. It is 
shown in this figure that the drive is also insensitive with 
parameter variations. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. Simulated starting responses of the drive: (a) speed, (b) torque and 
(c) current, ia. 
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8. Conclusions 
        

     A novel speed control technique for IPMSM using a 
neural network for on-line tuning of the parameters of a 
genetic based PI controller has been presented in this paper. 
The closed loop vector control of IPMSM drive incorporating 
the proposed RBFN based tuned PI controller has been 
successfully implemented in real-time for a laboratory 1 hp 
interior type permanent magnet motor. The PI controller 
parameters have been optimized off-line using GA based on a 
performance index to reflect the minimum settling time, 
minimum overshoot/undershoot and zero steady-state error. 
Based on the optimized operating conditions and control 
parameters the RBFN structure has been developed and 
trained on line to tune the PI controller parameters. The 
validity of the proposed control technique has been 
established both in simulation and experiment at different 
operating conditions. There is a close agreement between 
simulation and experimental results. The drive has been 
found robust in terms of quick response and disturbance 
rejection for a wide range of operating conditions. 
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Fig.7. Experimental starting responses of the drive: (a) speed and, 
(b) torque. 

Fig.8. Experimental responses of the drive for a step increase in load: 
(a) speed, (b) torque. 
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Fig.9. Experimental speed response of the drive for a step change in speed. 
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Fig.10. Experimental speed response of the drive with doubled stator 
resistance. 
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