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Abstrack In this paper, a new multiobjective evohrtionary
algorithm for EnvironmentaUEconomic power Dispatch (EED)
optimimtion problem is presented. The EED problem is formulated
as a nonlinear constrainedmultiobjective optimization problem with
both equatity and inequality constraints. A new Nondominated
Sorting Genetic Atgorithm (NSGA) based approach is proposed to
handle the problem as a true multiobjective optimization problem
with competing and non-commensurable objectives. The proposed
approach employs a diversity-preservingtechnique to overcome the
premature convergence and search bias problems and produce a
wetl-distributed Pareto-optimal set of nondominated solutions. A
hierarchical clustering technique is also imposed to provide the
decision maker with a representative and manageable Pareto-
optirnal set. Severaloptimization runs of the proposed approach are
carried out on a standard IEEE test system. The results demonstrate
the capabilities of the proposed NSGA based approach to generate
the true Pareto-optimal set of nondominated solutions of the
multiobjective EED problem in one single run. Simulation results
with the proposed approach have been compared to those reported in
the literature.The comparison shows the superiority of the proposed
NSGA based approach and confirms its potential to solve the
multiobjectiveEED problem.

1. INTRODUCTION

The basic objective of economic dispatch (ED) of electric
power generation is to schedule the committed generating
unit outputs so as to meet the load demand at minimum
operating cost while satisfying all unit and system equality
and inequality constraints. This makes the ED problem a
large-scale highly nonlinear constrained optimization
problem. In addition, the increasing public awareness of the
environmental protection and the passage of the Clean Air
Act Amendments of 1990 have forced the utilities to modi~
their design or operational strategies to reduce pollution and
atmospheric emissions of the thermal power plants.

Severat strategies to reduce the atmospheric emissions
have been proposed and discussed [ 1-3]. These include
installation of pollutant cleaning equipment such as gas
scrubbers and electrostatic precipitators, switching to low
emission fuels, replacement of the aged fuel-burners and
generator units with cleaner and more efficient ones, and
emission dispatching. The first three options require
installation of new equipment artd/or modification of the
existing ones that involve considerable capital outlay and,
hence, they can be considered as long-term options. The
emission dispatching option is an attractive short-term
alternative in which the emission in addition to the fuel cost

objective are to be minimized. Thus, the ED problem can be
handled as a multiobjective optimization problem with non-
commensurable and contradictory objectives. In recent years,
this option has received much attention [4-1 1] since it
requires only small modification of the basic economic
dispatch to include emissions.

Different techniques have been reported in the literature
pertaining to environmental/economic dispatch (EED)
problem. In [4-5] the problem has been reduced to a single
objective problem by treating the emission as a constraint
with a permissible limit. This formulation, however, has a
severe difficulty in getting the trade-off relations between
cost and emission. Alternatively, Minimizing the emission
has been handled as another objective in addition to usual
cost objective. A linear programming based optimization
procedures in which the objectives are considered one at a
time was presented in [6], Unfortunately, the EED problem is
a highly nonlinear and a multimodal optimization problem,
Therefore, conventional optimization methods that make use
of derivatives and gradients, in general, not able to locate or
identify the global optimum. On the other hand, many
mathematical assumptions such as analytic and differential
objective functions have to be given to simplify the problem.
Furthermore, this approach does not give any information
regarding the trade-offs involved.

In other research direction, the multiobjective EED
problem was converted to a single objective problem by
linear combination of different objectives as a weighted sum
[7-10]. The important aspect of this weighted sum method is
that a set of non-inferior (or Pareto-optimal) solutions can be
obtained by varying the weights. Unfortunately, this requires
multiple runs as many times as the number of desired
Pareto-optimal solutions. Furthermore, this method cannot be
used to find Pareto-optimal solutions in problems having a
non-convex Pareto-optimal front. In addition, there is no
rationat basis of determining adequate weights and the
objective function so formed may lose significance due to
combining non-commensurable objectives. To avoid this
difficulty, the e-constraint method for multiobjective
optimization was presented in [11-13]. This method is based
on optimization of the most prefemed objective and
considering the other objectives as constraints bounded by
some allowable levels s. These levels are then altered to
generate the entire Pareto-optimat set. The most obvious
weaknesses of this approach are that it is time-consuming and
tends to find weakly nondominated solutions.
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Goal programming method was also proposed for
multiobjective EED problem [14]. In this method, a target or
a goal to be achieved for each objective is assigned and the
objective function will then try to minimize the distance from
the targets to the objectives. Although the method is
computationally efficient, it will yield an inferior solution
rather than a non-inferior one if the goal point is chosen in
the feasible domain. Hence, the main drawback of this
method is that it requires a priori knowledge about the shape
of the problem search space.

The recent direction is to handle both objectives
simultaneously as competing objectives instead of
simplifying the multiobjective problem to a single objective
problem, A fuzzy multiobjective optimization technique for
EED problem was proposed [15]. However, the solutions
produced are sub-optimal and the algorithm does not provide
a systematic framework for dhecting the search towards
Pareto-optimal front. An evolutionary algorithm based
approach evaluating the economic impacts of environmental
dispatching and fuel switching was presented in [16]. The
important aspect of this approach is that it produces several
alternatives along the Pareto-optimal front. However, some of
nondominated solutions may be lost during the search
process while some of dominated solutions may be
misclassified as nondominated ones due to the selection
process adopted. In addition, no effort has been done to
prevent the algorithm from its bias towards some regions. A
fuzzy satisfaction-maximizing decision approach was
successfully applied to solve the biobjective EED problem
regarding minimization of both fuel cost and environmental
impact of NOX emissions [17]. However, extension of the
approach to include more objectives such as security and
reliability is a very involved question. A multiobjective
stochastic search technique for the multiobjective EED
problem was presented in [18]. This technique hybridizes
genetic algorithms (GA) and simulated annealing in the sense
that the selection process of GA is enhanced by local
heuristic search for better search capabilities. However, the
technique is computationally involved and time-consuming,
In addition, its severe drawback is the genetic drift and search
bias to some regions in the space that result in premature
convergence. This degrades the Pareto-optimal front and
more efforts should be done to preserve the diversity of the
non-dominated solutions.

On the contrary, the studies on evolutionary algorithms,
over the past few years, have shown that these methods can
be efficiently used to eliminate most of the above difficulties
of classical methods [19-22]. Since they use a population of
solutions in their search, multiple Pareto-optimal solutions
can, in principle, be found in one single run.

In this paper, a new nondominated sorting genetic
algorithm (NSGA) based approach is proposed for solving
the environmental/economic power dispatch optimization
problem, The problem is formulated as a nonlinear
constrained multiobjective optimization problem where fuel
cost and environmental impact are treated as competing
objectives. A diversity-preserving mechanism is added to the
search algorithm to find widely different Pareto-optimal

solutions. A hierarchical clustering technique is implemented
to provide the power system operator with a representative
and manageable Pareto-optimal set without destroying the
characteristics of the trade-off front. The potential of the
proposed NSGA based approach to handle the multiobjective
EED problem is investigated and discussed. Several runs are
carried out on a standard test system and the results are
compared to the classical multiobjective optimization
techniques. The effectiveness and potential of the proposed
approach to solve the multiobjective EED problem are
demonstrated,

2. PROBLEM FORMULATION

The environmental/economic dispatch problem is to
minimize two competing objective functions, fuel cost and
emission, while satis~lng several equality and inequality
constraints, Generally the problem is formulated as follows.

A, Problem Objectives

Minimization of Fuel Cost: The generator cost curves are
represented by quadratic functions with sine components to
represent the valve loading effects, The total $//z fuel cost
F(P~) can be expressed as

(1)

I di sin[ei(PG! - Pci)] I

where N is the number of generators, ai, bi, Ci, di, and ei are
the cost coefficients of the iti generator, and PG is the real
power output of the ih generator. PC is the vector of real
power outputs of generators and defined as

p~ = [Pq, PG2,.... P& IT (2)

Minimization of Emission: The total tonlh emission E(PG)of
atmospheric pollutants such as sulpher oxides SOX and
nitrogen oxides NOX caused by fossil-fueled thermat units
can be expressed as

N

where afi /?i$yb {i, and ~i are coefficients of the ifi generator
emission characteristics.

B. Problem Constraints

Generation .capacilycoztrtraint:For stable operation, real
power output of each generator is restricted by lower and
upper limits as follows:

PG~ <P’, <P~-, i=l,..., N
, , (4)

0-7803-7031-7/01/$10.00 (C) 2001 IEEE

0-7803-7173-9/01/$10.00 © 2001 IEEE 1264



Power balance constraint: the total power generation
must cover the total demand PDand the real power loss in
transmission lines PIO$$,Hence,

(5)
j+

SecuriQ constraints: for secure operation, the
transmission line loading S1is restricted by its upper limit as:

Sli 5 Sly, i = 1,...,nl (6)

where nl is the number of transmission lines.

c. Problem Formulation

Aggregating the objectives and constraints, the problem
can be mathematically formulated as a nonlinem constrained
multiobjective optimization problem as follows.

~irz~$zize [~(Z’.),~(~.)] (7)

subject to:
g(rc) =o (8)

/l(PC)s o (9)
where g and h are the power balance and generation capacity
constraints respectively,

3. PRINCIPLES OF MULTIOBJECTIVE
OPTIMIZATION

Many real-world problems involve simultaneous
optimization of several objective functions. Generally, these
functions are non-commensurable and often competing and
conflicting objectives. Multiobjective optimization with such
conflicting objective functions gives rise to a set of optimal
solutions, instead of one optimal solution. The reason for the
optimality of many solutions is that no one can be considered
to be better than any other with respect to all objective
functions, These optimal solutions are known as
Pareto-optimal solutions.

A general multiobjective optimization problem consists of
a number of objectives to be optimized simultaneously and is
associated with a number of equality and inequality
constraints. It can be formulated as follows:

Minimize f(x) i = 1,...,NO~j (lo)
x

Subject to:
{

gj(x)=o j=l,...,ll’l
(11)

h,(x)so /t=l,..., K
where fi is the }h objective functions, x is a decision vector
that represents a solution, NO~jis the number of objectives.

For a multiobjective optimization problem, any two
solutions x’ and X2 can have one of two possibilities- one
dominates the other or none dominates the other. In a
minimization problem, without loss of generality, a solution
x’ dominates X2iff the following two conditions are satisfied:

1, Vi= {1,2,..., NO~,}: f(X1)SJ ()’) (12)

2. 31G {1,2,...,Nobj}:fj(x’)< jj(x’) (13)

If any of the above condition is violated, the solution xl does
not dominate the solution X2,If x’ dominates the solution X2,
xl is called the nondominated solution. The solutions that are
nondominated within the entire search space are denoted as
Pareto-optimal and constitute the Pareto-optimal set or
Pareto-optimalfront.

4. THE PROPOSED APPROACH

A. Overview

Recently, the studies on evolutionary algorithms have
shown that these algorithms can be efficiently used to
eliminate most of the difficulties of classical methods which
can be summarized as:
l

l

l

l

An algorithm has to be applied many times to find
multipie Pareto-optimal soluii;ns,
Most algorithms demand some knowledge about
problem being solved.

Some algorithms are sensitive to the shape of
Pareto-optimal front.
The spread of Pareto-optimal solutions depends

the

the

on
efficiency of the single objective optimizer.
In gene;al, the go~ of-a mult{objective optimization

algorithm is not only guide the search towards the
P;eto-optimal front but also maintain population diversity in
the Pareto-optimat front. Unfortunately, a simple GA tends to
converge towards a single solution due to selection pressure,
selection noise, and operator disruption [23].

Srinivas and Deb [24] developed NSGA in which a
ranking selection method is used to emphasize current
nondominated solutions and a niching method is used to
maintain diversity in the population. The algorithm includes
two main steps: fitness assignment and fitness sharing.

Fitness assignment: it was first proposed by Goldberg
[21]. The basic idea of this approach is to find a set of
solutions in the population that are nondominated by the rest
of the population. These solutions are then assigned the
highest rank and eliminated from further contention. This
process continues until the population is properly ranked.

Fitness sharing: the basic idea behind sharing is: the more
individuals are located in the neighborhood of a certain
individual, the more its fitness value is degraded. The
neighborhood is defined in terms of a distance measure and
specified by the niche radius. In the basic NSGA, sharing was
implemented by a distance measure on the parameter space.

B. The Algorithm

The computational flow of the algorithm can be described
as follows. At first, the nondominated solutions in the
population are identified, These nondominated solutions
constitute the first nondominated front and assigned the same
dummy fitness value. These nondominated solutions are then
shared with their dummy fitness values. After sharing, these
nondominated individuals are ignored temporarily to process
the rest of population members. The above procedure is
repeated to find the second level of nondominated solutions
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in the population. Once they are identified, a dummy fitness
value, which is a little smaller than the worst shared fitness
value observed in solutions of fkst nondominated set, is
assigned. Thereafter, the sharing procedure is performed
among the solutions of second nondomination level and
shared fitness values are found as before. This process is
continued until all population members are assigned a shared
fitness value. The population is then reproduced with the
shared fitness values.

In this study, the basic NSGA has been developed in
order to make it suitable for solving real-world nonlinear
constrained optimization problems. The following
modifications have been incorporated in the basic algorithm.
1.

2.

3.

4.

A procedure is imposed ;O check the feasibility of the
initial population individuals and the generated children
through GA operations. This ensures the feasibility of
Pareto-optimal nondominated solutions.
Unlike the basic algorithm, sharing is carried out on
objective space rather than parameter space since the idea
behind sharing is to maintain diversity along Pareto-
optimal front which exists only in objective space.
A procedure for updating the Pareto-optimat set is
developed. In every generation, the nondominated
solutions in the first front are combined with the existing
Pareto-optimal set, The augmented set is processed to
extract its nondominated solutions that represent the
updated Pareto-optimal set.
A hierarchical clustering procedure based on the average
linkage method is inco;~orated to provide the decisi;n
maker with a representative and manageable Pareto-
optimat set without destroying the characteristics of the
trade-off front.
The computational flow of the proposed NSGA based

approach is shown in Fig, 1.

c. Implementation and Settings

Due to difficulties of binary representation when dealing
with continuous search space with large dimension, real-
coded GA [25] is used in this study. The decision variables
are represented by rest numbers within their lower and upper
limits. A blend crossover operator (BLX-a) has been
employed in this study. This operator starts by choosing
randomly a number from the interval [~,-a(yi-Q,y,+a ~t-~i)],
where x, and yi are the ith parameter values of the parent
solutions, xi c yi. TO ensure the balance between exploitation
and exploration of the search space, a = 0.5 is selected. The
non-uniform mutation [25], which makes uniform search in
the initial space and very locally at the later space, has been
applied in this study. The techniques used in this study were
developed and implemented using the FORTRAN language.

On all optimization runs, the population size was selected
as 200 individuals. The maximum size of the Pareto-optimat
set was chosen as 50 solutions. If the number of the
nondominated Pareto optimal solutions exceeds this bound,
the clustering technique is called. Crossover and mutation
probabilities were chosen as 0.9 and 0.001 respectively in all
optimization runs.

kInitialize population and Pareto~ptimal set, set gen=O

&
&

yesF-----

6Mutation

=

No

Is the child feasible?
A

Yes
No

Population filled?

mIdentify
nondominated

individuals

QAssign dummy
fitness

@

Sharing in
current front

Ea-
Update Pareto-optimal set

(3)No

stop Yes

Reduce Pareto-optimal set

Fig.1:Cornputationafflowoftheproposedapproach

5. RESULTS AND DISCUSSIONS

In this study, the standard IEEE 30-bus 6-generator test
system is considered to investigate the effectiveness of the
proposed approach. The single-line diagram of this system is
shown in Fig. 2 and the detailed data are given in [6, 11]. The
values of fuel cost and emission coefficients are given in
Table 1. Two different cases are considered as follows.

Case (a): For comparison purposes with the reported results,
the system is considered as lossless and the security constrain
is released. At first, fuel cost and emission are optimized
individually to get the extreme points of the trade-off surface.
Convergence of fuel cost and emission objective functions
are shown in Fig. 3. The best results of cost and emission
when optimized individually are given in Table 2.

Sharing on both parameter space and objective space has
been investigated The results are shown in Fig, 4. It is seen
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that the sharing on objective space results in better Table2: ‘Ihebestsolutionsforcostandemission

performance compared to sharing on parameter space for the Case(g) Cuse(b~. ... . ...... ........ .. .. .......... . .......... .- ......- ....—._.. .--- ..... . ...... ..... ....

problem in hand, The distribution and the diversity of the
cost Emission cost ,Grifsiorr........ .. ... .. .. ... ...... ...... .. ........ ........... ........ ... ..... ....... ............... ......... ... .........

PG,
nondominated solution in Pareto-optimal front are much

0.10972 0.40603 0.11520 0.41023
pGj 0.29987 0.45900

better in case of sharing on objective space.
0.30560 0.46309

PG, 0.52403 0.53781 0.59734 0.54371

The results of the proposed approach were compared to PG4 1.01605 0.38311 0,98106 0.38954

those reported using linear programming (LP) [6] and PGJ 0.52463 0.53803 0.51371 0.54373

multiobjecdve stochastic search technique (MOSST) [18].
PGs 0.35971 0.51002 0,35427 0.51472

Fuel Cost ($/h) 600,111 638.257
The comparison is given in Table 3. It is quite evident that

607.777 645.220
Emission (toti) 0.22213 0.19420 0.21985 0.19418

the moDosed armroach eives better reSLdts.

Case (b): In this case, the transmission power loss has been
taken into account. Convergence of fuel cost and emission
objective functions are shown in Fig. 5. The best results of
cost and emission when optimized individually are given in
Table 2. The values of best cost and emission objectives with
the proposed approach are given in table 3. The results of
sharing on different spaces are shown in Fig. 6. It is also seen
that the diversity of the nondominated solutions is much
better in case of sharing on objective space.

Table1:Generatorcostmd emissioncoefficients
G, Gz G, G, G, G,

. . .. . .. . . . .... . . ... . ... .. . .. .. .. . . . ........ ... .. .......... ......................
a 10 10 20 10 20

2
10

0., b 200 150 180 100 180 150
u

c 100 120 40 60 40 100

a 4,091 2.543 4.258 5.426 4.258 6.131

5P.= -5.554 -6.047 -5.094 -3.550 -5.094 -5.555

6.490 5.638 4.586 3.380 4.586

$;

5.151
2.013-4 5.OE-4 1.OE-6 2.OE-3 1.OE-6 1.OE-5

a 2.857 3.333 8.000 2.000 8.000 6.667

7-’ 5-F--- 6
-%

7

/1 -14 *1 I I

/“
/ P

t t
10

-n!— 17 15 9

\ )

—r#%-19 /

.+J===--a-c-- ‘

Fip,.2: Single-linediamm ofIEEE30-bus test system

’27

)
J

c,

Table 3: Fuel cost and emission for different atgorifhms

LP MOSST Prouosed
[6] [181 Case (a) L Case (b)

Best Cost 606.314 605.889 600.285 608.664
Corresp. Emission 0.22330 0.22220 0.22001 0.21907

Best Emission 0.19423 0.19418 0.19449 0,19515
Corresp. Cost 639.600 644.112 635.785 638.001

612 — -0,2040

— cost

610- . .... .... E~iSSi~”
-0.2020

608-
z -0.2000 :

8
.-

606-
W

%
.-
:

z
- I

-0.1980 ~
604

602

- L

-0,1960

. . ... ... .... . . .... ..
600 # I I I I 0.1940

0 10 30 40

Generations
Fig. 3: Convergence of cost and emission objective fawtions of case (a)

0.2200

1r0.2150 *
+ Sharing on the parameter space

%*
Sharing on the objective space

J **+
0.2100

c
o.-
07

1
0.2050.-

;

0.2000

0.1950

**%

* *** *

‘“0”~
610 620 630 640

Fuel Cost

Fig. 4 Pareto-optimat front of the proposed approach in case (a)

6. CONCLUSION

In this paper, a new approach based on the nondominated
sorting genetic algorithm has been presented and applied to
environmental/economic power dispatch optimization
problem. The problem has been formulated as multiobjective
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optimization problem with competing fuel cost and
environmental impact objectives. The results show that the
proposed approach is efficient for solving multiobjective
optimization in that multiple Pareto-optimal solutions can be
found in one simulation run. In addition, the nondominated
solutions inl the obtained Pareto-optimal set are well
distributed and have satisfactory diversity characteristics. The
most important aspect of the proposed approach are that any
number of objectives can be considered.

612

b. ~

o.19&J

611 ~
— cost

\
...... ...... Emission

0,1970

610 c
o.—

L

0.1960 8.-

m9
g

0,1953
61X

\

L \...-
&17 ~ 1 1 I 1 0,1940

0 10 ‘ 30’ 40 50

generations

Fig. 5: Convergence of cost and emission objective fimctions of case (b)

0.2200 —

0,2150-

0.2100 —

c

:~ 0,2050-
~

0.2000-

0.1950-

**
+ Sharingon parameterspace

*
+ ~ Sharingon objeetive space

600 610 620 630 S40

Fuel Cost

Fig. 6: Pareto-optimal front of the proposed approach in case (b)
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