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Abstracti In this paper, a novel evolutionary algorithm based

approach to optimal design of multimachine Power System
Stabilizers (PSSS)is proposed. The proposed approach develops and
employs Particle Swarm Optimization (PSO) technique to search for
optimal settings of PSS parameters.Two eigenvalue-based objective
functions to enhance system damping of electromechanical modes
are considered. The robustness of the proposed approach to the
initial guess is demonstrated. The performance of the proposed PSO
based PSS (PSOPSS) under different disturbances and loading
conditions is tested and examined. Eigenvalue analysis and
nonlinear simulation results show the effectiveness of the proposed
PSOPSSS to damp out the electromechanical oscillations and work
effectivelyover a wide range of loading conditions.
Keywords: PSS, particle swarmoptimization, dynamic stability.

1. INTRODUCTION

Power systems are experiencing low frequency
oscillations due to disturbances. The oscillations may sustain
and grow to cause system separation if no adequate damping
is available. To enhance system damping, the generators are
equipped with power system stabilizers (PSSS) that provide
supplementary feedback stabilizing signals in the excitation
systems [1-9].

Different techniques of sequential design of PSSS are
presented [3] to damp out one of the electromechanical
modes at a time. However, the stabilizers designed to damp
one mode can produce adverse effects in other modes. The
sequential design of PSSS is avoided in [4] where various
methods for simultaneous tuning of PSSS in multimachlne
power systems are proposed. Unfortunately, the proposed
techniques are iterative and require heavy computation
burden due to system reduction procedure. In addition, the
initialization step of these algorithms is crucial and affects the
final dynamic response of the controlled system, A gradient
procedure for optimization of PSS parameters is presented in
[5]. Unfortunately, the problem of the PSS design is a
multimodal optimization problem therefore locat optimization
techniques are not suitable for such a problem. In general,
conventional optimization methods that make use of
derivatives and gradients are not able to locate or identify the
global optimum.

Recently, heuristic search algorithms such as genetic
algorithm (GA) [6-7], tabu search algorithm [8], and
simulated annealing [9] have been applied to the problem of
PSS design. The results are promising and confirming the
potential of these algorithms for optimal PSS design. Unlike

other optimization techniques, GA is a population-based
search algorithm, which works with a population of strings
that represent different potential solutions. Therefore, GA has
implicit parallelism that enhances its search capability and the
optima can be located more quickly when applied to complex
optimization problems. Unfortunately, recent research has
identified some deficiencies in GA performance [10]. This
degradation in efficiency is apparent in applications with
highly episkztic objective functions, i.e., where the parameters
being optimized are highly correlated. In addition, the
premature convergence of GA degrades its performance and
reduces its search capability.

Particle swarm optimization (PSO) has been proposed and
introduced as a new evolutionary computation technique in
[11 -12], This technique combines social psychology
principles in socio-cognition human agents and evolutionary
computations, PSO has been motivated by the behavior of
organisms such as fish schooling and bird flocking.
Generally, PSO is characterized as simple in concept, easy to
implement, and computationally efficient. Unlike the other
heuristic techniques, PSO has a flexible and well-batanced
mechanism to enhance the global and local exploration
abilities.

In this paper, a novel PSO based approach to PSS design
is proposed. The problem of PSS design is formulated as an
optimization problem with mild constraints and two different
eigenvalue-based objective functions. Then, PSO algorithm is
employed to solve this optimization problem. Eigenvalue
analysis and nonlinear simulation results have been carried
out to assess the effectiveness of the proposed PSSS under
different disturbances and loading conditions. In addition, the
performance of the proposed PSOPSS is compared to that of
recent approaches reported in the literature.

2, PROBLEM STATEMENT

A, System Model and PSS Structure

A power system can be modeled by a set of nonlinear
differential equations as:

i =f(x,u) (1)

where X is the vector of the state variables and U is the vector

of input variables. In this study X = [d, (/),Eg, Efd ]T and

U is the PSS output signals.
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In the design of PSSS, the linearized incremental models
around an ecpilibrium point are usually employed [1-2].
Therefore. the state equation of a power system with n
lmchines and npss stabilizers can be written as:

Ai=AAX+BU (2)

~whereA is 4nx4n matrix and equals af/ax while B is 4nX

nP~~matrix and equals df /F)U. Both A and B are evaluated

iit a certain operating point. AX is 4nx 1 state vector while U is
nps~x 1 input vector.

A widely used conventional lead-lag PSS is considered in
his study. It can be described as

JJTW O+ sT,, ) O+ sTu ) Aa,u,= K, ——
l+-sTW (1+sT2) (1+sT4) 2

(3)

where TWis the washout time constant, Ui is the PSS output
:signal at the itkmachine, and Am, is the speed deviation of this
machine. The time constants TW, T2, and Td are usually
:prespecified [4]. The stabilizer gain Ki and time constants Tli
and T3iare remained to optimize.

B. Objective Functions

To increase the system damping, two eigenvalue-based
Iobjective functions are considered as follows.
J1=~{Real(2J: 2.F 2.s of electromechanical modes} (4)

J2=rnin{ ~: Js & of electromechanical modes } (5)

where Real(l) and ~ are the real part and the damping ratio
of the i’h electromechanical mode eigenvalue respectively. In
the optimization process, it is aimed to Minimize J, in order
to shift the poorly damped eigenvalues to the left in $-plane.
On the other hand, it is aimed to Maximize JZ in order to
increase the damping of electromechanical modes. In this
study, these objectives are optimized individually. The
problem comtraints are the optimized parameter bounds.
Therefore, the design problem can be formulated as the
following opt imization problem,

Optimize J (6)
Subject to

Kiti < Ki :g Kim= (7)
Tli- < T,, < Tlinlax (8)

‘h< T3i~ T~i-T3i (9)
Typical ranges of the optimized parameters are [0.001-50]

for Ki and [0,06-1 .0] for T1,and T3i[2].The time constants TW
T2,and Tdare set as 5s, 0.05s, and 0.05s respectively.

The proposed approach employs PSO algorithm to solve
this optimization problem and search for optimal set of PSS
parameters, {Ki,T]> T3,, i=1,2,..., nPss}.

3. PARTICLE SWARM OPTIMIZATION

A. Overview

Like evo Iutionary algorithms, PSO technique conducts
search using a population of particles, Each particle
remesents a candidate solution to the nroblem. In a PSO

systeu particles change their positions by flying around in a
multi-dimensional search space until a relatively unchanging
positions has been encountered, or until computational
limitations are exceeded. In social science context, a PSO
system combines a social-only model and a cognition-only
model [11]. The social-only component suggests that
individuals ignore their own experience and adjust their
behavior according to the successful beliefs of individuals in
the neighborhood. On the other hand, the cognition-only
component treats individuals as isolated beings.

The advantages of PSO over other traditional optimization
techniques can be summarized as follows: -
l

l

l

l

B.

PSO is a population-based search algorithm i.e., PSO
has implicit parallelism. This property ensures PSO to
be less susceptible to getting trapped on local minima.
PSO uses objective function information to guide the
search in the problem space. Therefore, PSO can easily
deal with non-differentiable objective functions.
PSO uses probabilistic transition rules, not deterministic
rules. Hence, PSO is a kind of stochastic optimization
algorithm that can search a complicated and uncertain
area. This makes PSO more flexible and robust than
conventional methods.
Unlike GA and other heuristic algorithms, PSO has the
flexibility to control the balance between the global and
local exploration of the search space.

PSO Algorithm

The basic elements of PSO technique are briefly stated
and defined as follows: -

Particle, X(t),: It is a candidate solution represented by an
m-dimensional real-valued vector, where m is the number
of optimized parameters, At time t, the jfi particle Xj(t) can

be described as Xj(t)=[~j,l(t), . ... ~j,~(t)], where ~s are the
optimized parameters and xl,~(r) is the position of the jti
particle with respect to the k’hdimension, i.e., the value of
the @ optimized parameter in the jti candidate solution.
Population, pop(t),: It is a set of n particles at time t, i.e.,
pop(t)= [xl(t), .. .. xn(t)]T.
Swarm: itis an apparently disorganized population of
moving particles that tend to cluster together while each
particle seems to be moving in a random direction [11].
Particle velocity, V(t),: It is the velocity of the moving
particles represented by an m-dhnensional real-valued
vector. At time t, the jti particle velocity Vj(t) can be
described as Tj(t)=[vj,l(t),....Vj,m(t)l,Whert:v~,~(t)is the
velocity component of the jti particle w.r,t. k dimension.
Znerti weight, w(t),: It is a control parameter that is used
to control the impact of the previous velocities on the
current velocity. Hence, it influences the trade-off
between the global and local exploration abilities of the
particles [12] For initial stages of the search process,
large inertia weight to enhance the global exploration is
recommended while, for last stages, the inertia weight is
reduced for better local exploration.
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= Individual best, X’(t),: As a particle moves through the
search space, it compares its fitness value at the current
position to the best fitness value it has ever attained at any
time up to the current time. The best position that is
associated with the best fitness encountered so far is
called the individual best, X’(t). For each particle in the
swarm X*($ can be determined and updated during the
search. In a minimization problem with objective function
J, the individual best of the jti particle Xj’(t) is determined
such that J(X*(f))< .l(Xj(z)), r < t.For simplicity, assume
that J*=.l(;$*/t)).For thejti particle, individual best can be
expressed as Xj*(t)=[~j*,l(t)l .. .. ~j’,~(t)].

o Global best, X**(t),: It is the best position among all
individual best positions achieved so far. Hence, the
globat best can be determined as .l(X**(f))< .J(Xj*(t)),
j=l ,... ,rs. For simplicity, assume that J**=J(X”*(t)).

l Stopping mi.fkria: These are the conditions under which
the search will terminate. In this study, the search will stop
if one of the following criteria is satisfied: (a) the number
of iterations since the last change of the best solution is
greater than a prespecified number; or (b) the number of
iterations reaches the maximum allowable number.
In this study, the basic PSO has been developed by

incorporating the following modifications: -
. An annealing procedure has been incorporated in order to

to make uniform search in the initial stages and very
locally search in the later stages. A decrement function for

decreasing the inertia weight given as w(t)=a w(t-1), a is
a decrement constant smaller than but close to 1, is
proposed i.nthis study.

l A feasibility check procedure of the particle positions has
been imposed after the position updating to prevent the
particles from flying outside the feasible search space.

. The particle velocity in the k’h dimension is limited by
some maximum value, vk-. This limit enhances the local
exploration of the problem space and it realistically
simulates the incremental changes of human learning [ 11].
To ensurfi uniform velocity through all dimensions, the
maximum velocity in the kmdimension is proposed as:

Vkmx = (Xy –xkm)/N (lo)
N is a chosen number of intervals in the@ dimension.
In PSO algorithm, the population has n particles that

represent candidate solutions. Each particle is an m-
dimensional real-valued vector, where m is the number of
optimized parameters. The PSO technique can be described
in the following steps,
Step 1 (Initialization): Set the time counter t=O and generate

randomly n particles, {Xj(0), j=l, ... . n], where
Xj(0)=[xj,l(O), ... . ~j,~(o)]. ~j,~(o)is generated by randomly
selecting a vahse with uniform probability over the /$’
optimized parameter search space [x~tin, x~-]. Similarly,
generate randomly initial velocities of all particles, {Vj(0),
j=l, ... . n}, where Vj(0)=[vj,l(O), ... . vj,~(0)]. vj,k(o) is
generated by randomly selecting a value with uniform
probability over the k’h dimension [-v~- , v~-]. Each
particle in the initial population is evaluated using the

objective function, 3, For each particle, set Xj*(0)=Xj(O)
and Jj*=.lj, j= 1, ... . n, Search for the best value of the
objective function &,t. Set the particle associated with
&,~ as the global best, ~*(0), with an objective fuction
of ~’. Set the initial value of the inertia weight w(O).

Step 2 (Time updating): Update the time counter t=t+l.

Step 3 (Weight updating): Update the inertia weight w(t)=a
W(t-1),

Step 4 (Velocity updating): Using the global best and
individual best, the jti particle velocity in the 1$’
dimension is updated according to the following equation:

Vj,k (t)=w(t) v j,k (t– 1)+ c1q (X;,k(t- 1)
(11)

- Xj,k (t - 1))+ c2r2(X;k(t - 1)- Xj,k(t– 1))

where c1 and Cz are positive constants and r, and r-zare
uniformly distributed random numbers in [0,1]. Check the
velocity limits. It is worth mentioning that the second term
represents the cognitive part of PSO where the particle
changes its velocity based on its own thinking and
memory. The third term represents the social part of PSO
where the particle changes its velocity based on the social-
psychological adaptation of knowledge.

Step 5 (Position updating): Based on the updated velocities,
each particle changes its position according to the
following equation

Xj,~ (t) = ‘j,~ (t) + ‘j,~ (t – 1, (12)

Step 6 (Individual best updating): Each particle is evaluated
according to the updated position. If ~~j%, j=l, ... . n,
then update individual best as Xj’(t)= Xj(t) and J*=4 and
go to step 7; else go to step 7.

Step 7 (GZobaf best updating): Search for the minimum value
.lti. among .lj*,where min is the index of the particle with
minimum objective function value, i.e., mine ~; j=l, ... .
n}. If Jtid”” then update global best as ~’= X~in(t)and
J*”=J~ti and go to step 8; else go to step 8.

Step 8 (Stopping criteria): If one of the stopping criteria is
satisfied then stop, else go to step 2.

c. PSO Implementation

The proposed PSO based approach was implemented
using the FORTRAN language and the developed software
program was executed on a 166-MHz Pentium I PC. Initially,
severat runs have been done with different values of the PSO
key parameters such as the initial inertia weight and the
maximum allowable velocity, In our implementation, the
initial inertia weight w(0) and the number of intervals in each
space dimension N are selected as 1.0 and 8 respectively.
Other parameters are chosen as: number of particles n=50,
decrement constant cx=O.98, C1=C2=2,and the search will be
terminated if (a) the number of iterations since the last change
of the best solution is greater than 50; or (b) the number of
iterations reaches 500.

To demonstrate the effectiveness of the proposed design
approach, two different systems are considered. PSS
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parameters are optimized at the operating condition
designated as base case. To assess the robustness of the
proposed PSS, two additional cases designated as case 1 and
case 2 that represent different loading conditions and system
configurations are considered. It is worth mentioning that the
nonlinear system model is used in time-domain simulations.

4. SIMULATION RESULTS

A. Test System and PSS design

In this example, the 3-machine 9-bus system shown in Fig.
1 is considered. The rated MVA of G,, Gz, and G3 are 247.5,
192, and 128 respectively. Details of the system data are
given in [1]. The participation factor method shows that the
generators GZ and GS are the optimum locations for installing
PSSS. Hence, the optimized parameters are K, Tlti and T3i,
i=2,3. These parametersare optimized at the operating point

specified as base case. The generator and system loading
levels at this case are given in Table 1 and Table 2
respectively.

To demonstrate the robustness of the proposed approach
to the initial solution, different initializations have been
considered. The final values of the optimized parameters are
given in Table 3. The convergence of objective functions is
shown in Fig. 2. It is clear that, unlike the conventional
methods, the proposed approach finally leads to the optimal
solution regardless the initial one. Therefore, the proposed
approach can be used to improve the solution quality of
classical methods.

*’7
Load C

—

G2

~ H-Q

cl

2 7 8 9 3

5T T’
‘+
O%

Fig. 1: Three-machine nine-bus power system

Table 1: Loads in pu on system 1OO-MVAbase
Lad Base Case Case 1 Case 2

P Q P Q P Q
A 1.250 0.500 2.000 0.800 1.500 0.900
B 0.900 0.300 1.800 0.600 1.200 0.800
c 1.000 0.350 1.500 0.600 1.000 0.500

Table 2: Generator loadin~

Gen. Base Case Case 1 Case 2
P Q P Q P Q

G1 0.289 0.109 0.892 0.440 0.135 0.453
G, 0.849 0.035 1.000 0.294 1.042 0,296—.
G3 0.664 -0.085 1.000 0.280 1.172 0.298

Table 3: The optimal parameters of the proposed PSOPSSS
Gen. Objective Function J1 Objective Function J2

k TI T3 k TI T3
G2 8.255 0.201 0.137 1,742 1.000 0.090
G3 0.082 0.631 0.629 0,041 0.602 0.265

0,00

1
-1.00-

$

. .

“400~
o 40 80 120

Iterations
0.30 —

0.25-
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g
.- 0.20
6
s

1? 0,15

0
>.-
5 0.10 — .~
a.-

6
(

0.05-
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IterJions

Fig. 2: Convergence of objective fictions with different initializations

B. Eigenvalue Analysis and Simulation Results

To assess the effectiveness and robustness of the
proposed PSOPSS over a wide range of loading conditions,
two different cases designated as case 1 and case 2 are
considered. The generator and system loading levels at these
cases are given in Table 1 and Table 2 respectively. The
electromechanical mode eigenvahtes and the corresponding
damping ratios without PSSS for all cases are given in Table
4. It is clear that these modes are poorly damped and some of
them are unstable. The electromechanical mode eigenvalues
and the corresponding damping ratios with the proposed
PSOPSSS for J1 and J2 settings are given in Table 5 and 6
respectively, It is obvious that the system damping with the
proposed PSOPSSS is greatly improved and enhanced.

For further illustration, a 6-cycle three-phase fault at bus
7 at the end of line 5-7 is considered. The speed deviation of
GS are shown in Fig. 3. The performance of the proposed
PSOPSSS is compared to that of GA based PSS (GAPSS)
given in [13]. It is clear that the proposed PSOPSSS
outperform the GAPSSS and provide good damping
characteristics and enhance greatly power system stability.
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Table 4: EI~

Base Case Case 1 Case 2

-0.01 *j 9.07,0.001 -0.02ij 8.91, 0.002 0.38 Q 8.87,-0.034
-0.78 *j 13.86,0,056 -0.52 # 13.83,0.038 -0,34 &j 13.69,0.025

Table 5~and da~
Base Case Case 1 Case 2

-3.73 &j8.76, 0.391 -2.35 &j7.62, 0.294 -2.53 *j 8.28, 0.292
-3.74 *j 18.77,0.195 -4.11 ij 18.85, 0.213 -3.93 ij 18.55,0.207

~
Base Case Case 1 Case 2

-2,15 q’ 7.85,0.264 -L62 q“ 7.62,0.208 -1.51 *j 7.95,0.187
-3.57 *j 13.02,0,264~ -2.68 i“ 12.92,0.203

0,015

1

-—-- No PSS

------ GA PSS

0.010 . . . . . . ..- Proposed PSO PSS wih J1

— Proposed PSO PSS wih Jq

~ 0,005-

m

: 0.000

-0.005-

0,00 1,00 2,00 3,00 4,00

Time (s)

F]g. 3: Systemresponse to 6-cycle fault disturbance

5. EXAMPLE 2: NEW ENGLAND POWER SYSTEM

A. Test System and PSS Design

In this example, the 10-machine 39-bus New England
system shown in Fig. 4 is considered. G1 is an equivalent
power source representing parts of the U.S.-Canadian
interconnection system. Details of the system data are in [14].

For illustration and comparison purposes, is is assumed
that all generators except G, are equipped with PSSS. Hence,
the optimized parameters are Ki T,i, and T3i>i=2,3,... ,10 i.e.,
the number of optimized parameters is 27 in this example.
PSO algorithm has been applied to search for settings of these
parameters so as to optimize each objective function. The
fiil values of the optimized parameters are given in Table 7.

Table 7 The optimal parametem of the proposed PSOPSSS
Gen Objective Function J1 Objective Function Jz

k T1 T3 k TI T3
G? 38.462 0.728 0.603 30.644 0.638 1.000
G3 21.538 0.719 0.785 40.633 0.673 0,324
Gd 19.716 0.953 0.592 47.775 0.530 0.977
GS 38.040 0.131 0.251 15.536 0.810 0.140
G6 46.057 0.477 0.857 24.872 1.000 0.834
G7 5.1928 0.294 0.199 1.0514 1.000 0.529
Grj 23.418 1.000 1.000 23.957 1.000 1.000
G9 49.998 0.176 0.136 24.551 0.102 0.549

~ 31.462 1.000 0.992 26.998 1, 000 1.000

Www
Fig. 4 Single line diagram for New England system

B. Eigenvalue Analysis and Simulation Results

To demonstrate the effectiveness and robustness of the
proposed PSOPSSS under severe conditions and critical line
outages, two different operating conditions in addition to the
base case are considered. They can be described as: Case 1;
outage of line 2 1-22; and case 2; outage of line 14-15.

The electromechanical modes without PSSS are given in
Table 8. It is clear that these modes are poorly damped and
some of them are unstable. The electromechanical modes and
the corresponding damping ratios with the proposed
PSOPSSS for .lI and J2 settings are given in Tables 9 and 10
respectively, It can be seen that the electromechanical mode
eigenvalues with the proposed PSSS have been shifted to the
left in s-plane, It is obvious that the system damping is greatly
improved and enhanced for all cases.

For time-domain simulations, a 6-cycle three-phase fault
at bus 29 at the end of line 26-29 has been applied and the
faulty line is tripped of for 1.0s befor successful reclosure.
The performance of the proposed PSOPSSS is compared to
that of GAPSSS given in [13] and gradient-based PSSS given
in [5]. Due to space limitations, only the speed deviation of
Gg is shown in Fig. 5. It can be seen that the gradient based
PSSS are not able to stabilize the system under the fault
disturbance. It is cIear that the system performance with the
proposed PSOPSSS is much better than that of GAPSSS and
the oscillations are damped out much faster. In addition, the
proposed PSOPSSS are quite efficient to damp out the local
modes as well as the interarea modes of oscillations. This
illustrates the potential and superiority of the proposed design
approach to get optimal set of PSS parameters.

6. CONCLUSIONS

In this study, a novel particle swarm optimization based
approach to optimal design of multimachine PSSS is
presented. The proposed design approach employs PSO to
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search for optimal settings of conventional lead-lag PSS
parameters. The proposed approach has been applied to two
different examples of multimachine power systems with
different loading conditions and system configurations, The
main features of the proposed approach can be summarized
as

1.

2.

3.

4.

5.

The proposed PSSS are of decentralized nature since only
local measurements are employed as the stabilizer inputs.
This makes the proposed PSOPSS easy to tune and install,
In addition, the proposed stabilizers are of widely-used
lead-lag structure which can be easily implemented and
examined by power utilities.
The results show the potential of PSO technique for
optimal design of PSS.
The solution quality of the proposed approach is
independent of the initialization step. Therefore, the
proposed approach can be used to improve the quality of
the solutions of other classical optimization methods,
Eigenvaltte analysis reveals the effectiveness of the
proposed PSOPSSS to damp out electromechanical modes
of oscillations.
Nonlinear time simulation results show that the proposed
PSOPSSS can work effectively over a wide ~ange of
loading conditions and system configurations.

0,020

“h, b

! ----- Gradient.basedPSS

I ----- GAPSS

/ . ------ ProposedPSOPSS (J4Sethgs)

0,010 I j~ _

;::
ProposedPSOPSS (J~Semngs)

3
n

i;, .’..+i: ;,,

0.000 \
0s / ; ~ ~>a!” “ - ‘“’’..,. ”-----

yj ‘i // \ ,,, ‘.,’

: ~~i,f
,1 :;

\,:l ,,

-0.010 \: “

-oo’”~~
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Fig, 5: Systemresponses with fautt disturbance
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-1.409*j 5.130,0.265 -0.981 &j4.496,0.213 -1.412*j 5.075,0.268 [121
-1.573 & 8.119,0.190 -1.493 *j 9.093,0.162 -1.546 ?j 9.428,0.162
-1.762 q“ 9.143,0.189 -1.674 *j 8.000,0.205
-1.771 *j 9.730,0.179 -2.060 +j 10.24,0.197

-1”556*j7“410’0“206 [13]
-2.140 *j 9.648,0.217

-2.173 *j 12.16,0.176 -2.219 *j 12,11,0.180 -2.146 *j 10.27, 0.20S
-2.178 *j 10.39, 0.205 -2.237% 12.45,0.177
-2.252 *j 12.51,0.177 -2.248 +j 9.323,0.234

-2169 ‘j 121770175 [141
-2.258 *j 12.49,0.178

-2.513 k“ 13.7S, 0.179~ -2.603 *“ 13.77, 0.186
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