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Abstract

A Fuzzy Basis Function Network (FBFN) based
Power System Stabilizer (PSS) is presented in this paper.
The proposed FBFN based PSS provides a natural
Jramework for combining numerical and linguistic
information in a uniform fashion. The proposed FBFN is
trained over a wide range of operating conditions in
order to re-tune the PSS parameters in real-time based on
generator loading conditions. The orthogonal least
squares (OLS) learning algorithm is developed for
designing an adequate and parsimonious FBFN model.
Time domain simulations of a synchronous machine
equipped with the proposed stabilizer subject to major
disturbances are investigated. The performance of the
proposed FBFN based PSS is compared with that of a
conventional power system stabilizer (CPSS). The results
show the robustness of the proposed FBFN PSS and its
ability to enhance system damping over a wide range of
operating conditions and system parameter variations.

1. Introduction

In the past two decades, the utilization of
supplementary excitation control signals for improving
the dynamic stability of power system has received much
attention [1-8). Nowadays, the conventional power
system stabilizer (CPSS) is widely used by power system
utilities [3]. Other types of PSS such as proportional-
integral (PI PSS) and proportional-integral-derivative
(PID PSS) have also been proposed [4-5]. The gain
settings of these controllers are determined based on the
linearized model of the power system around a nominal
operating point to provide optimal performance at this
point. Generally, the power systems are highly nonlinear
and the operating conditions can vary over a wide range
as a result of load changes, line switchings, and
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unpredictable major disturbances such as three phase
faults. Thus the gain settings of these controllers must be
re-tuned on-line to provide good damping characteristics
over a wide range of operating conditions.

Alternative  controllers using adaptive control
algorithms have been proposed to overcome such
problems [5-6]. However, most adaptive controllers are
designed on the basis of parameter identification of the
system model in real-time which results in time
consuming and computational burden.

Recently, many intelligent system techniques have
been developed and introduced such as neural networks
[7] and fuzzy logic systems [8]. Unlike the most
conventional methods, an explicit mathematical model of
the system dynamics is not required to design a controller
using neural networks and/or fuzzy logic systems. The
recent direction is to integrate neural networks and fuzzy
logic systems in order to combine their different strengths
and overcome each other’s weaknesses.

In this paper, we propose a fuzzy basis function
network based power system stabilizer (FBFN PSS) to
enhance power system dynamic stability. An FBFN
which brings the learning capabilities of neural networks
to fuzzy logic systems is trained to adapt the parameters
of PSS based on real-time measurements of the machine
loading conditions.

2. Problem Formulation
To enhance system damping, the generator is

equipped with a PSS. A widely used CPSS is considered
in this study. It can be described as [2]

s, K.(+sT)

= &)
1+sT, 1+4T,

The time constants 7, and T, are always given while
K_ and T, remain to be determined. These parameters are



FUZZ-1EEE'97

determined by linearizing the nonlinear model of the
system around a nominal operating point to provide
optimal performance at this point. Having been
determined, these parameters remain fixed. Generally,
power systems are highly nonlinear and the operating
conditions can vary over a wide range. Consequently, the
operating point will ¢hange and the fixed-gain PSS no
longer ensure the optimal performance.

The proposed FBFN will re-tune the PSS parameters
based on real-time measurements of loading conditions
by training a FBFN over a wide range of operating points.
The FBEN PSS control scheme is shown in Fig. 2. The
system model and parameters are given in the Appendix.
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Figure 1. FBFN PSS control scheme
3. Fuzzy Basis Function Network

Like the feedforward networks, FBFN has four layers
as shown in Fig. 2. It is worth noting that Fig. 2 shows the
initial network structure where the number of fuzzy rules,
M, is equal to the number of training patterns, &V, whereas
the final structure is much simpler. In the following we
will denote the output of the ith node in the kth layer by
O,-k. The proposed network structure with 7 inputs and m
outputs can be described as follows:

Layer_1: For the ith input, every node in this layer
computes the degree of membership of the input. Every
node j has a function of

Ojl—_- By x), j=12,.....M @

where p; (x;) is a membership function associated with
the 7th input and jth rule. It can be expressed as

1 X —¢

i, (x,) = exp(-= (——)") ®
2 oy

where ¢; and o are the mean and the variance of the jth

function.

Layer 2: Every node in this layer multiplies the
incoming signals and sends the product out, i.e.,

1446

0}= Hi=1“v‘(xi) =12, .M )

Basically, each node output represents the firing
strength of a fuzzy rule.

Layer 3: Every node in this layer calculates the ratio
of the jth rule’s firing strength to the sum of all rules’
firing strengths, 1. €.,

03 — le';l H’J (xi>

J M
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J=1
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In other words, nodes in this layer compute the
normalized firing strength of each rule. In fact, the output
of each node in this layer represents a fuzzy basis
function, p/(x), that is,

3
p(x)=0;

J=12, ... .M (6)

where x=[x,, . .. x,]” is the input vector.

Layer 4: In this layer each node represents an output
and linearly combines the fuzzy basis functions as

M
Of =Y p,(x)0, Jk=12,...,m (7
Jj=1

where 6, is the weight between the jth node in layer 3 and
the kth node in layer 4.

Layer 2 Layer 3

Layer 4

Layer 1

Figure 2. A schematic diagram of the proposed FBFN



4. OLS Learning Algorithm

The OLS algorithm is a linear optimization
technique, therefore, it guarantees the convergence of the
network parameters to global minima. While the most of
the learning algorithms require a prespecified network
structure, OLS algorithm provides a systematic approach
to the selection of FBFN structure in an intelligent way in
the sense of adequate and parsimonious structure is self-
organized. The objectives of the training in this paper are
to select a set of appropriate means of the membership
functions and to estimate the network weights. Although
each membership function may have a different variance,
a common variance is sufficient for universal
approximation [9-10]. All the variances in the network
can therefore be fixed to a value o to simplify the training
strategy. The training input-output pairs are in the form of
{x(0),d(0)}, t=1,2,...,.N where N in the number of training
patterns, x(t)=[x1(t),...,x,,(t)]T is the input vector, and
diH=[d ,(t),...,d,,,(t)]T is the desired output vector. Initially,
all the training data are considered as candidates for
centers. Therefore, the initial number of centers M is
equal to N. The network output in (7) can be considered
as a special case of the linear regression model

M
d0=Y p, (10 , +ed k=12....m @®)

J=1
where p(f) are known as regressors which are fixed
functions of the input vector x(s), i. e.,

Pj(’)zpj(x(t)) )
and ey?) are the errors between the kth desired and
network outputs which are assumed to be uncorrelated
with the regressors. By defining

d=[d (). .... amy’  ,i=12...m (10)
e=[e,; (D). . ... e’ Li=12...m an
pelp(h). ... pN =12 M (12)
then for t=1,2, . . .,N, (8) can be expressed as
ell elm
d,...d,}=lp;.. .pl +le;.. e,  (13)
O . . B4
or in matrix form
D=P® +E 14
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The OLS algorithm involves the transformation of
the set of p; into a set of orthogonal basis vectors and uses
only the significant ones to form the final FBFN. In
general, the number of significant basis vectors in the
final network, M,, is much less than the initial number, M.
The regression matrix P can be decomposed into

P=WA (15)
where A is an M, X M, upper triangular matrix with unity
diagonal elements, that is,

1 ay, A
0 1
A= (16)
Apg 11,
0 O 1

and W is an Mx M, matrix with orthogonal columns w;
such that
w'w=H (17)

where H is a diagonal matrix. Using (15), (14) can be
rewritten as

D=WG+E (18)
The OLS solution for (18) is given by

G=H'W'D (19)
or
g=wid/wlw) =12 M, j=12,...m (20)
The matrices G and ® satisfy the triangular system

AO® =G @2n

The classical Gram-Schmidt method {11] can be used
to derive (21) and thus to solve for ®.

5. The Proposed FBFN Based PSS

The OLS learning algorithm is used to train the
proposed FBFN so that the trained FBFN will be able to
re-tune the conventional PSS parameters based on real-
time measurements of loading conditions. The inputs to
the FBEN are the real power (P), the reactive power (Q),
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and the terminal voltage (V) while the outputs are the
desired PSS parameters, X, and 7. Generally, the input-
output training patterns must cover most of the working
range in order to get better performance, that is, P ranging
from 0.5 pu to 1.5 pu, O ranging from 0.0 pu to 0.5 pu,
and V ranging from 0.95 pu to 1.05 pu.

In this study, we introduce two types of the proposed
FBFN PSS as follows.

5.1. FBFN PSS type 1

In this type, an FBFN was trained based on input-
output pairs only. A set of 500 training pattemns was
presented to the network. The training patterns were
uniformly distributed to cover all the input space. Out of
these patterns a set of 41 patterns was selected by the
OLS algorithm to represent the significant fuzzy basis
functions, 1. e., M=41.

5.2. FBFN PSS type 2

This type is proposed to demonstrate that the
proposed linguistic rules are very important and may
contain information which is not contained in the input-
output pairs. This type is a hybrid stabilizer that combines
an FBFN and a traditional fuzzy logic controller. First, an
FBFN was trained using a set of only 50 training patterns
and a maximum of 20 significant fuzzy basis functions.
Secondly, a traditional fuzzy logic controller was
designed based on only proposed nine rules that relate the
input fuzzy variables P and Q with the output fuzzy
variables K, and T,. Each of these variables is interpreted
into three linguistic fuzzy subsets. These subsets are High
(H), Medium (M), and Low (L). Each subset is associated
with a gaussian membership function in the form of (3).
The means and variances of these functions are given in
Table 1. The input and output gains are used to properly
scale the fuzzy. Their values are also given in Table 1.

The proposed fuzzy control rules can be stated as
follows:

R;:
R
Rj:
Ry
Ry
Rg
R
Rg:
Ry
It is worth pointing out that these rules are
determined by studying the performance of CPSSs. The

IFPisHand Qis HTHEN K, isMand T, is M
IFPisHand Qis MTHEN K isLand T, is H
IFPisHand Qis L THENK,is Land T, is H
IFPisMand Qis HTHEN K. is Hand T, is L
IFPisMand Qis M THEN K, is Mand T, is M
IFPisMand QisL THENK_ isLand T,is H
IFPisL and Qis HTHEN K isHand T, is L
IFPisL and Qis MTHENK_ isHand 7;is L
IFPisL andQisL THENK isMand T,is M
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membership function parameters and input and output
gains are chosen by trial-and-error approach.

The output of this type is the average of the network
and the fuzzy logic controller outputs.

Table 1. Membership function parameters

P Q Kc TI
H 0.65 0.40 0.75 0.40
Mean M 0.50 0.25 0.50 0.30
L 0.35 0.10 0.25 0.20

Variance 0.25 0.25 4 0.2
Gain 0.5 1.0 0.083 1.0

6. Studies and Simulations

In order to investigate the performance of the
proposed FBFN PSS, a number of studies has been
performed and the results of time domain simulations of
the two proposed types are compared with that of the
CPSS [2]. All time simulations are carried out using the
nonlinear model of the system.

6.1. Fault test

To verify the behavior of the proposed FBFN PSS
under transient conditions, a three phase fault was applied
at the generator terminals for 0.11s while the generator is
operating at P=1.0 pu with 0.85 power factor lagging and
terminal voltage of 1.0 pu. Results of the study are shown
in Fig. 3. It is obvious that for both types of the proposed
FBFN PSS, the system returns to its previous operating
point faster than the conventional controller.

6.2. Input torque change test

With the same operating conditions in subsection 6.1,
the input mechanical torque was increased by 50% from
t=1.0s to t=4.0s. The simulation results of this case are
shown in Fig. 4. The results here demonstrate the
superiority of the proposed FBFN PSS to the CPSS, that
is, only both types of the proposed FBFN PSS return to

the previous operating point.
6.3 Leading power factor operation test

With the leading power factor, the stability margin is
reduced and it becomes very important to test the PSS
under this difficult situation. A 0.1 pu step in mechanical
torque was applied at t=1.0 s while the generator was
operating at a power of 0.7 pu with 0.9 power factor



leading. The simulation results are shown in Fig. 5. It is
clear that the performance of the proposed FBFN PSS is
much better than that of the CPSS and the oscillations are
damped out much quicker.

6.4 Parameter variation test

To verify the robustness of the proposed FBFN PSS,
the system inertia has been reduced in steps until
instability has been reached. In each step, a 50% pulse in
the input torque has been applied from t=1.0s to t=2.0s
with the same operating conditions in subsection 6.1. The
results are shown in Figs. 6 and 7. It was found that the
system inertia can be reduced up to 30% for FBFN PSS
type 1 and 35% for type 2. It is worth mentioning that
increasing the system inertia increases the system
damping. The simulation results verify the robustness of
the proposed FBFN PSS and its ability to work over a
wide range of operating conditions and system parameter
variations.
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Figure 3. Response to the three phase fault test
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Figure 4. Response to the input torque change test

Some comments on these simulation studies are now
in order:
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a) The proposed FBFN based PSS in type 1 has good
performance under major disturbances and robust for
system parameter changes; this suggests that given a
sufficient number of input-output pairs, the OLS
learning algorithm can determine a successful FBFN
based PSS.

b) Type 2 of the proposed FBFN based PSS showed
better results than type 1. This demonstrate that the
control performance was greatly improved by
incorporating the linguistic fuzzy rules into the
controller. Moreover this type is more robust than

type 1.
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7. Conclusions

In this study, a fuzzy basis function network trained
by OLS learning algorithm was employed to adapt the
PSS parameters to improve power system dynamic
stability. The proposed FBFN PSS was trained based on
real-time measurements of the generator loading
conditions. The training has been carried out over a wide
range of operating conditions. Simulation results show the
robustness of the proposed FBFN PSS and its ability to
provide good damping characteristics during transient
conditions. The most important advantage of the
proposed FBFN based PSS is that it provides a natural
framework to combine both numerical information in the
form of input-output pairs and linguistic information in
the form of fuzzy IF-THEN rules in a uniform fashion.
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10. Appendix

System Model and parameters:

pé =0, (e -1 (A1)
po =(T,~-T,~-D®-1)/ M (A2)
PE, =(E, — (3, -%x,)ig = ENIT, (A3)
pE :(Ka(Vref—V"'Uc)_Efd)/]; (A4
V,=V,sind + Ri, ~ X i, (A.5)
Vq =V, cosd + R,i, +X,i, (A.6)
V=g +VH" (A7)
1, :E;iq—(x;i—xq)idiq (A.8)
M=4.74 s, ©,=37Tradls, x~17, x=1.64, x,=0.245,
R=0.02 X=04, D=00, T,=59, T=0.05,
K=400, T,=5.0, T,=0.1, -73pu < Ey < 73 pu,

-0.12pu £ U, £0.12pu
All resistances and reactances are in per-unit and
time constants are in seconds.

11. Nomenclature

o) first derivative d/dt

5 torque angle

®,A®  speed and speed deviation respectively

M inertia constant

Oy, synchronous speed

Eq‘ internal voltage behind x,

Ey equivalent excitation voltage

D damping coefficient

ig, 1y stator currents in d and g axis circuits respectively
V,V,s terminal and reference voltages respectively
Vy infinite bus voltage

R,, X, line resistance and reactance respectively

Xg, X Synchronous reactances in d and g axes

X4 d-axis transient reactance

Tdo’ time constant of excitation circuit

T T, mechanical and electric torques respectively
K,T. regulator gain and time constant respectively
U, PSS control signal

conventional controller gain
T, T, conventional controller time constants
T washout time constant



