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Abstract- A Radial Basis Function Network (RBFN)
based Power System Stabilizer (PSS) is presented in this
paper to improve the dynamic stability of multimachine
power systems. The proposed RBFN is trained over a
wide range of operating conditions in order to re-tune the
parameters of the PSS in real-time. Time domain
simulations of a muitimachine power system with
different operating conditions subject to a three phase
fault are studied and investigated. The performance of
the proposed RBFN PSS is compared to that of
conventional power system stabilizer (CPSS). The results
show the good damping characteristics of the proposed
RBFN PSS over a wide range of operating conditions.

1. Introduction

In the past two decades, the utilization of
supplementary excitation control signals for improving
the dynamic stability of power systems has received
much attention [1-5]. Nowadays, the conventional power
system stabilizer (CPSS) is widely used by power system
utilities [3]. The gain settings of these stabilizers are
determined based on the linearized model of the power
system around a nominal operating point to provide
optimal performance at this point. However, CPSS
performance is degraded whenever the operating point
changes from one to another because of fixed parameters
of the stabilizer.

Alternative controllers using adaptive control
algorithms have been proposed to overcome such
problems [4-5]. However, most of the adaptive
controllers are designed based on the parameter
identification of the system model in real-time which is a
time consuming task. ’

Recently, it has been shown that artificial neural
networks (ANNSs) with one hidden layer can uniformly
approximate any continuous function to any chosen
degree of accuracy [6]. ANNs trained with
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backpropagation algorithm have been applied to various
power system problems [7-10]. However, there are
several problems associated with these networks such as
getting stuck in local minima and slow convergence rate.

It has recently been acknowledged that
approximation accuracy properties of RBFN are
advantageous as compared to the other ANN models
[11]. The “linear in parameters” property of the radial
basis functions guarantees the convergence of the
parameters to the global minimum. Moreover, the local
tunability of the radial basis functions makes only a part
of the nodes to be affected by any given input [11], and
only a portion of the model parameters may need to be
adjusted, thus reducing the training time and
computational overhead.

In power systems, RBFN has been successfully
applied to modeling and control of synchronous
machines [12-13]. However, applications. of RBFN to
more complex problems have not yet been exploited.

In this paper, a radial basis function network based
power system stabilizer (RBFN PSS) for a multimachine
power system is proposed. An RBFN is employed to
estimate the stabilizer parameters based on real-time
measurements of the loading conditions. In order to
investigate the performance of the proposed RBFN PSS,
time domain simulations of a multimachine power
system under several loading conditions and major
disturbances are examined. Simulation results show the
superiority of the proposed RBFN PSS to the CPSS and
its capability to enhance system damping over a wide
range of operating conditions.

2. Radial basis function network

2.1. RBEN structure

Like most feedforward networks, RBFNs have three
layers, namely, an input layer, a hidden layer, and an
output layer. The nodes within each layer are fully



connected to the previous layer nodes. A schematic
diagram of an RBFN with » inputs and m outputs is
given in Fig. 1. The input variables are each assigned to
a node in the input layer and pass directly to the hidden
layer without weights. The hidden layer nodes are the
RBF units. Each node in this layer contains a parameter
vector called a center. The node calculates the euclidean
distance between the center and the network input
vector, and passes the result through a nonlinear
function, ®(.). The output layer is a set of linear
combiners. The overall input-output response of the
RBFN is a mapping /: R"— R, that is,

vi=wo + 2 w,o(x-c,[l.B,
j=1

where ¢; and [3; are the center and the width of the jth
RBF unit respectively. In (1), y; is the ith output, x=[x, . .
. x,,]'r is the input vector, », is the number of RBF units,
and w’s are the connection weights. In this study, ®(.) is
chosen to be gaussian activation function, that is,

O(z,p) = exp(-2' /) @
2.2. Learning algorithm

The centers, the widths, and the connection weights
represent the network parameters that have to be
determined by the learning algorithm. These parameters
are determined in three steps. First, the centers are
determined using k-means clustering algorithm by
prespecifying the number of clusters , #,,[14]. Secondly,
the width parameter of the ith hidden unit, B, is chosen
to be the root mean square distance between c; and a
number of the nearest neighboring unit centers ,n,, as

n, 2 /2
B, = [;1—2 <)) } ®
n j=1

Finally, the weights between the hidden units and the
output units are determined by rearranging (1) as

n,,+l

Yi= ijiq)j 4
=1

where @; is the output generated by the jth hidden node.
In (4), the (n,+1)" hidden node produces a constant unity
output which allows for implementation of bias on the
output layer. In matrix form, (4) can be rewritten as

AW=D &)

The matrix 4 is an n, X (n,+1) matrix which stores the
results of the n;, hidden nodes for each of the training
patterns presented to the network in addition to the
constant value node. Here n, is the number of the
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training patterns. The matrix W is an (#,+71) X m matrix.
The matrix D is an n, X m matrix which represents the
desired outputs. Using orthogonal triangularization
technique [15], (5) can be solved for W.

X1 Xi Xn

Fig. 1. Schematic diagram of RBFN.

3. Problem formulation

Consider a multimachine power system whose
stability is to be enhanced by installing PSSs. The
commonly used lead-lag PSS is chosen in this study. The
ith local stabilizer can be described as

= STW Kﬂ-(l + ST") Ao ’. (6)
1+sT, 1+sT,

where U, and Aw; are the stabilizer input and output
signals respectively. The time constants 7, and 7, are
usually prespecified [2]. The other parameters K,; and T;
are determined by linearizing the nonlinear model of the
system around a nominal operating point to provide
optimal performance at this point. Having been
determined, these parameters remain fixed. Generally,
the power systems are highly nonlinear and the operating
conditions can vary over a wide range. Consequently,
these fixed-gain PSSs no longer ensure the optimal
performance. Thus the gain settings of these controllers
must be re-tuned on-line to provide good damping
characteristics over a wide range of operating conditions.
In the proposed approach, the trained RBFN will re-tune
the stabilizer parameters based on real-time
measurements of loading conditions. The RBFN PSS
control scheme is shown in Fig. 2.
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Fig. 2. The proposed RBFN PSS control scheme

4. Training of RBEN based PSS

The purpose of the training in this paper is to make
the proposed RBFN able to re-tune the values of K; and
T,; parameters based on real-time measurements of the
ith machine loading conditions. To generate the training
patterns, the load admittances have been randomly
varied in the range of 0.5 to 2.0 of their nominal values.
With each variation, the load flow solution of the system
is obtained and the CPSS is designed by linearizing the
system model around the current operating point.
Therefore, each training pattern consists of the real
power P; and the reactive power O, to represent the
network inputs and the values of K; and T7; to represent
the desired outputs.

In order to evaluate the performance of the trained
network, we define an average percentage error (APE) as

Wa

214 - ()
APE = —i—zin—P——-— *100 Q)
2.4
i=1
where n, is the number of training patterns and (i) and

(i) are the ith desired and actual outputs respectively.
5. Results and simulations
5.1. Test system and optimum PSS locations

To evaluate the effectiveness of the proposed RBFN
based PSS, the nine-bus three-machine power system
shown in Fig. 3 was considered. Each machine has been
represented by a fourth order two-axis nonlinear model.
Details of the system data are given in [1]. Without
PSSs, the system response curves due to a 6-cycle three
phase fault at bus 7 are shown in Fig. 4. It is observed
from Fig. 4 that the system damping is poor and the
system is highly oscillatory. Therefore, it is necessary to
install stabilizers in order to have good dynamic
performance. To identify the optimum locations of PSSs,
sensitivity of PSS effect (SPE) method [16] was used.
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The results indicate that the generators G2 and G3 are
the optimum locations for installing PSSs to damp out
the electromechanical modes of oscillations. Therefore,
the generators G2 and G3 are equipped with two of the
proposed RBFN based PSS. The performance of the
proposed stabilizers was compared to that of CPSSs
installed on G2 and G3 with the transfer function [1]

10s  (1+0.568s)> ®
1+10s (1+0.02275)2

G(s) =

5.2. Network training

Two RBFNs are proposed to re-tune the stabilizers
installed on G2 and G3. Each RBFN was trained using a
set of 500 input-output patterns. The number of REF
units n, and the number of the nearest neighboring
centers n, are chosen by trial and error to" get the
minimum APE. The trained networks were tested by
another set of 500 input-output patterns that have not
been presented before to the networks. The errors APE
and the structure of the networks are given in Table 1.
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Fig. 3. Three-machine nine-bus power system.
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Fig. 4: Response to a three phase fault without PSSs.



Table 1: APE and RBFN structures

Speed Deviations (pu)

PSS APE RBFN Structure
Location K, T, ny, n,
G2 0.020 0.026 25 6
G3 0.031 0.028 25 6
Table 2: Loading conditions
Loading Condition Gl G2 G3
Nominal P (pu) 0.713 1.630 0.852
Q (pv) 0.275 0.068 -0.108
Heavy P (pu) 2.207 1.920 1.280
Q (pu) 1.092 0.565 0.360
Light P (pu) 0.362 0.800 0.450
Q (pw) 0.166 -0.107 -0.203
Table 3: Load admittances
Load Nominal Heavy Light
A 1.261-j0.504  2.314-j0.925  0.640-j0.542
B 0.878-j0.293  2.032-j0.677  0.431-j0.335
C 0.969-j0.339  1.584-j0.634  0.472-j0.236

5.3. Numerical results

To demonstrate the capability of the proposed
RBFN based PSS to enhance system damping over a
wide range of operating conditions, three different
loading conditions were considered as given in Table. 2.
Load admittances in each case are given in Table 3. With
each loading condition, a three phase fault disturbance at
bus 7 was applied. The fault duration was 6 cycles. The
simulation results are shown as follows.

5.3.1. Nominal loading condition: The dynamic
response of the system is shown in Fig. 4. It is obvious
that with the proposed RBFN PSSs, the system returns to
its previous operating point faster than the CPSSs. This
is very helpful in the improvement of the disturbance
tolerance ability of the system.

5.3.2. Heavy loading condition: With heavy loading
conditions, the simulation results are shown in Fig. 5.
The results show the superiority of the proposed RBFN
PSSs to the CPSSs. It can be concluded that the proposed
RBFN PSS provides very good damping over a wide
range of operating conditions.

5.3.3. Light loading condition: The simulation results
are shown in Fig. 6. It can be seen that the proposed
RBFN PSSs produce much better results and the
oscillations are damped out much quicker as compared
to CPSSs.
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6. Conclusions

In this study, a radial basis function network trained
by k-means algorithm was employed to adapt the PSS
parameters to improve power system dynamic stability.
The proposed RBFN PSS was trained based on real-time
measurements of the real powers and reactive powers.
The training has been carried out over a wide range of
operating conditions. The effect of major disturbances
such as three phase fault on the proposed RBFN PSS
performance has been studied. Simulation results show
that the proposed RBFN PSS can provide good damping
characteristics over a wide range of loading conditions
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