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Abstract—A hybrid neuro-fuzzy scheme for online tuning
of a genetic-based proportional–integral (PI) controller for an
interior permanent-magnet synchronous motor (IPMSM) drive
is presented in this paper. The proposed controller is developed
for accurate speed control of the IPMSM drive under various
system disturbances. In this work, initially different operating
conditions are obtained based on motor dynamics incorporating
uncertainties. At each operating condition a genetic algorithm
is used to optimize the PI controller parameters in a closed-loop
vector control scheme. In the optimization procedure a perfor-
mance index is developed to reflect the minimum speed deviation,
minimum settling time and zero steady-state error. A fuzzy basis
function network (FBFN) is utilized for online tuning of the PI
controller parameters to ensure optimum drive performance
under different disturbances. The proposed FBFN-based PI
controller provides a natural framework for combining numerical
and linguistic information in a uniform fashion. The proposed
controller is successfully implemented in real time using a digital
signal processor board DS 1102 for a laboratory 1-hp IPMSM. The
effectiveness of the proposed controller is verified by simulation
as well as experimental results at different dynamic operating
conditions. The proposed controller is found to be robust for
applications in an IPMSM drive.

Index Terms—Digital signal processor (DSP), genetic algorithm
(GA), neuro-fuzzy control, permanent-magnet synchronous
motor, proportional–integral (PI) controller, speed control, vector
control.

I. INTRODUCTION

RECENT developments in power semiconductor tech-
nology, digital electronics, magnetic materials, and

control algorithms have enabled modern ac motor drives
to face challenging high-efficiency and high-performance
requirements in the industrial sector. Among ac drives, the
permanent-magnet synchronous motor has been becoming
popular owing to its high torque to current ratio, large power
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to weight ratio, high efficiency, high power factor, and robust-
ness [1]. These features are due to the incorporation of high
energy rare-earth alloys such as neodymium–iron–boron in
its construction. In particular, the interior permanent-magnet
synchronous motor (IPMSM), which has magnets buried in
the rotor core, exhibits certain good properties, such as robust
rotor construction, nonsalient rotor, and small effective air
gap. The rotors of these machines have complex geometry to
ensure optimal use of costly permanent-magnet materials while
maintaining high magnetic field in the air gap.

Fast and accurate speed response, quick recovery of speed
from any disturbances, and insensitivity to parameter variations
are some of the important criteria of the high-performance drive
(HPD) systems used in robotics, rolling mills, machine tools,
etc. In order to achieve high performance, the vector control
of the IPMSM drive is employed [2]. However, the controller
design of such a system plays crucial role in the system per-
formance. The decoupling characteristics of a vector-controlled
IPMSM are adversely affected by the parameter changes. Tra-
ditionally, these control issues are handled by the conventional
proportional–integral (PI) controller and other controllers such
as the model reference adaptive controller, sliding-mode con-
troller, and variable-structure controller have been widely uti-
lized as speed controllers in the IPMSM drive. However, the
difficulties of obtaining the exact – -axis reactance parameters
of the IPMSM leads to a cumbersome design approach for these
controllers. Moreover, the conventional fixed-gain PI controller
is very sensitive to step change of command speed, parameter
variations, and load disturbances [3]. Again, precise speed con-
trol of an IPMSM drive becomes a complex issue due to non-
linear coupling among its winding currents and the rotor speed
as well as the nonlinearity present in the electromagnetic de-
veloped torque due to magnetic saturation of the rotor core [4].
Therefore, there exists a need to tune the PI controller param-
eters online to ensure optimum drive performance over a wide
range of operating conditions.

The use of an artificial neural network (ANN) alone to de-
sign a controller for an IPMSM drive might be insufficient, if
the test inputs used to generate training input/output pairs are
not rich enough to excite all modes of the system. On the other
hand, fuzzy logic controllers (FLCs) are subjective and some-
what heuristic. In most cases, the determination of fuzzy rules,
input and output scaling factors, and the choice of member-
ship functions depend on trial and error that makes the design
of an FLC a time-consuming task [5]. However, it is impor-
tant to clarify that the proposed approach brings the learning
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capabilities of the ANN to the robustness of fuzzy logic sys-
tems in the sense that the fuzzy logic concepts are embedded in
the network structure and its operation. It also provides a nat-
ural framework for combining both numerical information in
the form of input/output pairs and linguistic information in the
form of IF–THEN rules in a uniform fashion and overcomes the
drawbacks of the ANN and FLC. Recently, some work has been
reported on the neuro fuzzy techniques for control applications
[6]–[9]. However, most of this work is for dc motor or induction
motor applications. Moreover, the approach used in this work
is different from previous work [6]–[9]. In the present work, a
fuzzy basis function network (FBFN) is utilized for speed con-
trol of an IPMSM to be used in HPD applications.

II. MOTOR DYNAMICS

The mathematical model of an IPMSM drive can be described
by the following equations in a synchronously rotating rotor –
reference frame as

(1)

(2)

(3)

where and are the - and –axes stator voltages, respec-
tively; and are the - and –axes stator currents, respec-
tively; is the stator resistance per phase; and are the

- and –axes stator inductances, respectively; and are
the electromagnetic and load torques, respectively; is the
moment of inertia of the motor and load; is the friction co-
efficient of the motor; is the number of poles; is the rotor
speed; is the differential operator ( ); and is the rotor
magnetic flux linking the stator.

III. CONTROL PRINCIPLE

The objective of this paper is to obtain the pulsewidth-modu-
lation (PWM) output voltages for the IPMSM drive in order to
achieve high-performance speed tracking. For the sake of testing
the proposed new technique, the speed control over the normal
mode of operation can be achieved by controlling the -axis
component of the supply current as long as the -axis cur-
rent is maintained at zero. The simplified resultant model for
the IPMSM drive can be represented as [19]

(4)

(5)

(6)

(7)

For extended overspeed and constant-power modes of operation
the flux-weakening techniques have been used earlier [10]–[13],

TABLE I
MACHINE PARAMETERS

[19]–[21]. For the maximum torque per ampere mode of oper-
ation, the relation between the and currents covering ex-
tended overspeed ranges is given as [13],

(8)

It is evident from (4)–(8) that controlling the – -axes compo-
nents of the stator current can vary the motor speed. Equations
(4)–(8) are used in order to test the proposed FBFN controller
over the rated speed while maintaining the maximum torque.
The flux-weakening technique is not incorporated to avoid
further complexity in real-time implementation. First, various
operating conditions are generated randomly by taking into
account different drive uncertainties based on (1)–(8) and the
machine parameters given in Table I. At each operating condi-
tion, a genetic algorithm (GA) is used to optimize PI controller
parameters in a closed-loop vector control scheme, which was
done offline. In the optimization procedure a performance index
is developed in order to ensure minimum speed deviation, min-
imum settling time, and zero steady-state error. Then, to get
an optimum drive performance an FBFN is utilized for online
tuning of the PI controller parameters whose initial values are
already optimized by the GA. For the sake of completeness
the pertinent GA and FBFN are briefly described.

IV. GAS

GAs are exploratory search and optimization procedures that
were devised on the principles of natural evolution and popula-
tion genetics [14]. Unlike other optimization techniques, GAs
work with a population of individuals represented by bit strings
and modify the population with random search and competition.
The advantages of the GA over other traditional optimization
techniques can be summarized as follows.

1) GAs search the problem space using a population of
trials representing possible solutions to the problem,
not a single point. This property ensures that the GA
will be less susceptible to getting trapped on local
minima.

2) GAs use a performance index assessment to guide the
search in the problem space.

3) GAs use probabilistic rules to make decisions.
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The GA includes operations such as reproduction, crossover,
and mutation. Reproduction is a process in which a new gen-
eration of population is formed by selecting the fittest individ-
uals in the current population. Crossover is the most dominant
operator in a GA. It is responsible for producing new offspring
by selecting two strings and exchanging portions of their struc-
tures. The new offspring may replace the weaker individuals in
the population. Mutation is a local operator, which is applied
with a very low probability. Its function is to alter the value of
random position in a string.

A. Real-Coded GA (RCGA)

Due to difficulties of binary representation when dealing with
a continuous search space with large dimensions, the proposed
approach has been implemented using an RCGA. A decision
variable is represented by a real number within its lower limit

and upper limit , i.e., .
The RCGA crossover and mutation operators are described

as follows.
1) Crossover: A blend crossover operator has been used in

this study. This operator starts by choosing randomly a number
from the interval [ , ], where
and are the th parameter values of the parent solutions and

. In order to ensure balance between exploitation and
exploration of the search space, is selected.

2) Mutation: The nonuniform mutation operator has been
employed in this study. In this operator, the new value of the
parameter after mutation at generation is given as

if
if

(9)

and

(10)

where is a binary random number, random number ,
is the maximum number of generations, and is a positive

constant chosen arbitrarily. In this study, was selected.
This operator gives a value such that the proba-
bility of returning a value close to increases as the algorithm
advances. This makes uniform search in the initial stages where

is small and local at latter stages.
For the optimal settings of PI controller parameters, the fol-

lowing quadratic performance index is considered:

(11)

In (11), the speed deviation is weighted by the respec-
tive time . The index is selected because it ensures small
settling time, small steady-state error, and small overshoots. The
tuning parameters are adjusted so as to minimize the index .

B. Computational Flow

Application of the GA for optimal design of the PI controller
involves repetitively performing the following two steps.

Fig. 1. Computational flowchart of GA.

Fig. 2. Schematic diagram of FBFN.

1) The objective function value must be calculated for each
of the strings in the current population. To do this, the
FLC parameters must be decoded from each string in the
population and the system is simulated to obtain the ob-
jective function value.

2) GA operations are applied to produce the next generation
of the strings.

These two steps are repeated from one generation to another
until the population has converged. The computational flow of
the optimization problem can be shown in Fig. 1.

V. FBFN

A. Structure

The specific FBFN has four layers as shown in Fig. 2 [15],
[16]. In what follows, we will denote the output of the ith node in
the th layer by . The operation of the network with inputs
and outputs can be described as follows:
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Layer 1: For the th input, every node in this layer com-
putes the degree of membership of the input. Every node
has a function of

(12)

where is a Gaussian membership function associ-
ated with th input and th rule. It can be expressed as

(13)

where and are the mean and the variance of the th
function.
Layer 2: Every node in this layer multiplies the incoming
signals and sends the product out, i.e.,

(14)

Each node output yields the firing strength of a fuzzy rule.
Layer 3: Every node in this layer calculates the ratio of
the th rule’s firing strength to the sum of all rules’ firing
strengths

(15)

The nodes in this layer compute the normalized firing
strength of each rule. The output of each node in this layer
represents a fuzzy basis function as

(16)

where is the input vector.
Layer 4: In this layer each node represents an output and
linearly combines the fuzzy basis functions as

(17)

where is the weight between the th node in layer 3
and the th node in layer 4. For learning purposes, the
orthogonal least-square (OLS) method is used in this work
[16].

B. OLS Learning Algorithm

The objectives of training in this paper are to construct a par-
simonious and adequate model of the network, to select a set of
appropriate centers of the hidden units, and to estimate the
weights . The training input–output pairs are in the form
of , , where is the number of
training patterns and is the desired
output vector. Initially, all the training data are consid-
ered as candidates for centers. Initial number of centers is
equal to . The network output in (12) can be considered as a
special case of linear regression model as

(18)

where are known as regressors which are fixed functions
of the input vector as

(19)

and are the errors between the th desired and network
outputs which are assumed to be uncorrelated with the regres-
sors. By defining

(20)

(21)

(22)

For (18) can be expressed as

(23)
or in matrix form as

(24)

The OLS algorithm involves the transformation of the set of
into a set of orthogonal basis vectors and uses only the signif-
icant ones to form the final FBFN. In general, the number of
significant basis vectors in the final network is much less
than the initial number . The regression matrix can be de-
composed as

(25)

where is an upper triangular matrix with unity di-
agonal elements as

(26)

and is an matrix with orthogonal columns such
that

(27)

where is a diagonal matrix.
Using (23), (24) can be rewritten as

(28)

The OLS solution for (26) is given by

(29)

or

(30)
The matrices and satisfy the triangular system as

(31)
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The classical Gram–Schmidt method [16] can be used to derive
(31) and, thus, to solve for . The criterion for determining the
significance of candidates is the contribution of a candidate to
the trace of the desired output covariance matrix. Because the
error matrix is orthogonal to , it can be shown that the trace
of the covariance of is

trace trace

(32)
The error reduction ratio due to can be defined as

err
trace

(33)

A candidate regressor is selected at the th step if it produces
the largest value of from among the rest candidates. The
regressor selection step is given as follows.

At the first step, for
compute:

Find:
Select: ; ,

At the th step where ,
for
and , compute:

Find:

Select ; ,

Fig. 3. Block diagram of the proposed FBFN-based controller for IPMSM
drive.

Fig. 4. Hardware schematic for real-time implementation.

The procedure is terminated at the
th step when

where is a chosen tolerance.
This gives a subset
model containing significant
regressors.

VI. REAL-TIME IMPLEMENTATION

The block diagram of the closed-loop vector control scheme
of the IPMSM incorporating the proposed FBFN controller is
shown in Fig. 3. The drive is experimentally implemented using
a digital signal processor (DSP) board DS1102 through both
hardware and software [17].

The hardware schematic for real-time implementation of the
proposed IPMSM drive is shown in Fig. 4. The DS1102 board
is based on a Texas Instruments (TI) TMS320C31, a 32-bit
floating-point DSP. The DSP has been supplemented by a set
of on-board peripherals used in digital control systems, such
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as A/D, D/A converters and incremental encoder interfaces.
The DS 1102 is also equipped with a TI TMS320P14, a 16-bit
microcontroller DSP that acts as a slave processor and is used
for some special purposes. In this work, the slave processor is
used for digital I/O configuration. The actual motor currents
are measured by the Hall-effect sensors, which have good
frequency response and are fed to the DSP board through
an A/D converter. As the motor neutral is isolated, only two
phase currents are fed back and the other phase current is
calculated from them. The rotor position is measured by an
optical incremental encoder which is mounted at the rotor shaft
end. Then, it fed to the DSP board through encoder interface.
The encoder generates 4096 pulses per revolution. By using a
fourfold pulse multiplication the number of pulses is increased
to 4 4096 in order to get better resolution. A 24-bit position
counter is used to count the encoder pulses and is read by a
calling function in the software.

The motor speed is calculated from the rotor position by
backward difference interpolation. A digital moving average
filter is used to remove the noise from the speed signal. The
calculated actual motor speed compared with command speed
and the speed error is used to calculate the torque component
of the current using the FBFN-based PI control algorithm.
The command – – phase currents are generated from and

using inverse Park’s transformation [5], [17]. In order to
implement the vector control algorithm, the hysteresis controller
is used as the current controller. It is to be noted that other types
of current controllers have also been used earlier [22], [23].
However, it is beyond the scope of this paper. The hysteresis
current controller compares the command currents with the
corresponding actual motor currents and generates the logic
signals, which act as firing pulses for the inverter switches.
Thus, these six PWM logic signals are the output of the DSP
board and are fed to the base drive circuit of the inverter power
module. The D/A channels are used to capture the necessary
output signals in a digital storage oscilloscope. The complete
IPMSM drive is implemented through software by developing
a program in high-level ANSI “C” programming language.
The program is compiled by the TI “C” compiler and then
the program is downloaded to the DSP controller board. The
sampling frequency for experimental implementation of the
proposed IPMSM drive system is 6.67 kHz.

VII. SIMULATION AND EXPERIMENTAL RESULTS

Several tests were performed to evaluate the performance
of the proposed FBFN-based IPMSM drive system both in
simulation and experiment. The speed, stator current, and torque
responses are observed under different operating conditions
such as sudden change in command speed, step change in load,
parameter variations, etc. Sample results are presented below.
The complete drive has been simulated using Matlab/Simulink
[18].

The simulated motor speed, current, and torque responses are
shown in Fig. 5(a)–(c) to see the starting performance as well
as the response with a load disturbance of the drive. The drive
system is started at a constant load of 1 N m with the speed

(a)

(b)

(c)

Fig. 5. Simulated starting responses of the proposed hybrid intelligent
controller based drive: (a) speed, (b) stator current, i , and (c) torque.

Fig. 6. Simulated speed responses of the drive for a step change in command
speed.
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Fig. 7. Experimental starting responses of the proposed drive at full-load condition: (a) speed, (b) torque, (c) stator current i , and (d) steady-state current i .

Fig. 8. Experimental responses of the proposed drive for a step change in load:
(a) speed (66.67 rad/s/div) and (b) torque (2 N�m/div).

reference set at 1800 r/min (188.5 rad/s). It can be seen from
Fig. 5(a) that the actual speed converges to the reference value
within 0.1 s without any overshoot/undershoot and with zero
steady-state error. At s, a load torque of 2 N m is ap-
plied to the motor shaft in a stepwise manner. The actual speed
does not change during the disturbance while the stator cur-
rent swiftly reaches its new value corresponding to the load ap-
plied. This shows that the new controller is capable of starting
from standstill condition to the rated speed as well as rejecting
the load disturbance. Another simulated speed response for a
sudden change in command speed is shown in Fig. 6. It is ev-
ident from Fig. 6 that the proposed FBFN-based drive is also
capable of handling the disturbance in speed command.

The experimental starting performance including speed,
torque, transient, and steady-state stator current are shown

Fig. 9. Experimental speed responses of the proposed drive for a step change
in speed.

in Fig. (7a)–(d), respectively. It is shown that the proposed
drive is also capable of following the command speed very
quickly with zero steady-state error and almost without any
overshoot/undershoot in a real-time situation. Fig. 8 shows
another speed and the corresponding torque responses for a
step change in load torque using the dynamometer. It is shown
in Fig. 8 that the drive is insensitive with load disturbance.
Another experimental speed response is shown in Fig. 9 for a
step change in command speed. It is evident that the proposed
drive can adapt itself with speed disturbance. Fig. 10 shows
the speed response of the proposed drive for a doubled stator
resistance. The extra resistances are inserted externally to the
stator windings. It is evident from Fig. 10 that the drive can
handle the parameter variations smoothly.
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Fig. 10. Experimental speed responses of the proposed drive for a doubled
stator resistance.

VIII. CONCLUSION

A novel speed control technique based on a hybrid intelligent
controller for an IPMSM drive has been presented in this paper.
In the proposed hybrid intelligent approach a new neuro-fuzzy
technique is used for online tuning of the parameters of a PI
controller whose initial values are optimized by a GA. The
closed-loop vector control of the IPMSM drive incorporating the
proposed FBFN controller has been successfully implemented
in real time for a laboratory 1-hp IPMSM drive. The PI
controller parameters have been optimized offline using a GA
with a performance index to reflect the minimum settling
time, minimum overshoot/undershoot, and zero steady-state
error. Based on the optimized operating conditions and control
parameters the FBFN structure has been developed and trained
for online tuning of the PI controller parameters. The validity
of the proposed control technique has been established both
in simulation and experiment at different operating conditions
such as sudden load change, step change of speed, parameter
variations, etc. There is close agreement between simulation
and experimental results. The drive has been found robust in
terms of quick response and disturbance rejection.
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