9. STABILITY IN THE FREQUENCY DOMAIN

INTRODUCTION

A frequency domain stability criterion was developed by H. Nyquist in 1932 and remains a fundamental approach to the investigation of the stability of linear control system. Nyquist's work led to a procedure that can determine whether a system is stable by using the frequency response of the open-loop transfer function G(s)H(s). Thus, knowledge of the open-loop system's frequency response yields information about the stability of the closed-loop system. [This concept is similar to the root locus where we began with information about the open-loop system, its poles and zeros, and developed stability information about the closed-loop system].

The Nyquist procedure involves two parts.

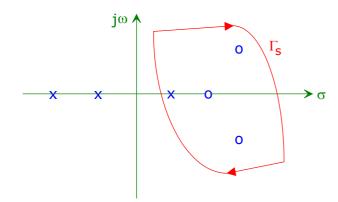
- Generating a Nyquist (polar) plot [See Chapter 8]
- Evaluating the system stability by interpreting the Nyquist plot.

Background

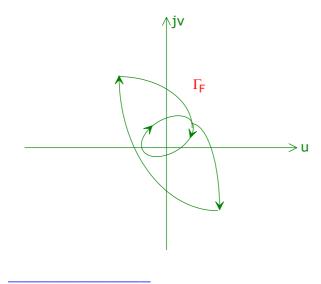
The *Nyquist stability criterion* is based on a theorem in the theory of the function of a complex variable due to Cauchy. Cauchy's theorem, commonly known as the principle of argument, states:

If a contour Γ_s in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles or zeros of F(s) (traversal is in a clockwise direction along the contour), the corresponding contour Γ_F in the F(s)-plane encircles the origin of the F(s)-plane N=Z-P times in the clockwise direction.

As an example of the Cauchy's theorem, consider the pole-zero pattern shown with the contour Γ_s to be considered.

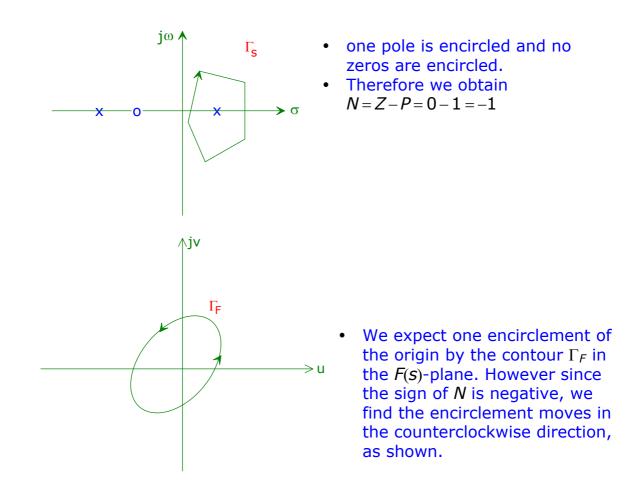


- The contour Γ_s encircles three zeros and one pole.
- Therefore we obtain N = Z P = 3 1 = +2



 The contour Γ_F completes two clockwise encirclements of the origin in the *F*(*s*)-plane.

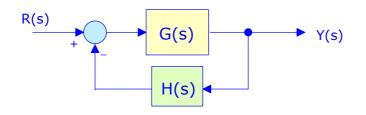
For the pole and zero pattern shown and the contour Γ_s as shown,



Now that we have illustrated the Cauchy's Theorem, we are ready to consider the stability criterion proposed by Nyquist.

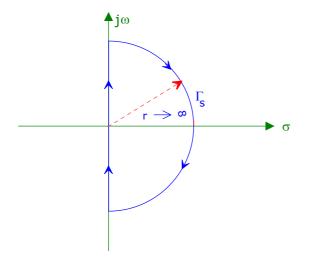
8-12-2003

THE NYQUIST STABILITY CRITERION



• For a system to be stable, all the zeros of the characteristic equation F(s) = 1 + G(s)H(s) = 0 must lie in the left-hand s-plane. [i.e. To the left of the $j\omega$ axis in the s-plane].

Therefore, we choose a contour Γ_s in the s-plane that encloses the entire right-hand s-plane as shown, and we determine whether any zeros of F(s) lie within Γ_s by utilizing Cauchy's theorem. That is we plot $\Gamma_F = F(s)$ in the F(s)-plane and determine the number of encirclements of the origin N.



Then the number of zeros of F(s) within the contour Γ_s [and therefore unstable zeros of F(s)] is

$$Z = N + P$$

- Note that *P* is the number of poles of *F*(*s*) in the right-hand s-plane, which is the same as the number of poles of *G*(*s*)*H*(*s*) in the right-hand s-plane.
- The procedure is greatly simplified if we plot G(s)H(s) instead of F(s) and look for the number of clockwise encirclements of the -1point instead of the number of clockwise encirclements of the origin.

Therefore the Nyquist criterion can be stated as follows:

Number of zeros [roots] of the C.E. in right-hand s-plane = Number of CW encirclements of the -1 point on the GH plane	Number of + right-hand s-plane poles of G(s)H(s)
---	--

When the number of poles of G(s)H(s) in the right-hand s-plane is zero, (i.e. P=0), the Nyquist criterion is stated as follows:

Number of zeros [roots] of the	_ Number of CW encirclements of
C.E. in right-hand s-plane	the -1 point on the GH plane

- When the number of poles of G(s)H(s) in the right-hand s-plane is other than zero, (i.e. $P \neq 0$), a system is stable if and only if the -1 point is encircled ACW P times .
- When the number of poles of G(s)H(s) in the right-hand s-plane is zero, (i.e. P=0), a system is stable if and only if the -1 point is not encircled.