# 8. FREQUENCY RESPONSE METHODS (CONT.)

### **E**XAMPLE OF THE DRAWING THE BODE DIAGRAM

The bode diagram of a transfer function G(s), which contains several poles and zeros is obtained by adding the plot due to each individual pole and zero. An example will now be given by considering a transfer function which has all the factors considered.

## Example

Draw the bode diagram of the following transfer function

$$G(j\omega) = \frac{5(1+j0.1\omega)}{j\omega(1+j0.5\omega)(1+j0.6\frac{\omega}{50} + \left(\frac{j\omega}{50}\right)^2)}$$

## <u>Solution</u>

The factors, in order of their occurrence as frequency increases, are as follows:

- 1. A constant gain K = 5
- 2. A pole at the origin
- 3. A pole at  $\omega = 2$
- 4. A zero at  $\omega = 10$
- 5. A pair of complex poles at  $\omega = \omega_n = 50$

First we plot the magnitude characteristic for each individual pole and zero factor and the constant gain

- 1) The constant gain is  $20 \log_{10} 5 = 14 dB$ , as shown in the figure.
- 2) The magnitude of the pole at the origin extends from zero frequency to infinite frequencies and has a slope of  $-20 \, dB/decade$  intersecting the 0-dB line at  $\omega = 1$ , as shown in the figure.
- 3) The asymptotic approximation of the magnitude of the pole at  $\omega = 2$  has a slope of -20dB/decade beyond the break frequency at  $\omega = 2$ . The asymptotic magnitude below the break frequency is 0dB, as shown in the figure.
- 4) The asymptotic approximation for the zero at  $\omega = 10$  has a slope of +20dB/decade beyond the break frequency at  $\omega = 10$ . The asymptotic magnitude below the break frequency is 0dB, as shown in the figure.
- 5) The asymptotic approximation for the pair of complex poles has a slope of -40dB/decade beyond the break frequency at  $\omega = \omega_n = 50$ . The asymptotic magnitude below the break frequency is 0dB, as shown in the figure. This approximation must be corrected to the actual magnitude because the damping ratio is  $\zeta = 0.3$ , and the magnitude differs appreciably from the approximation.



The total asymptotic magnitude can be plotted by adding the asymptotes due to each factor, as shown . The exact magnitude curve, obtained using MATLAB, is also shown for comparison.



The linear approximations of the phase characteristic of the individual factors are as follows:

- 1) The phase of the constant gain is  $0^{\circ}$ .
- 2) The phase of the pole at the origin is a constant  $-90^{\circ}$ .
- 3) The linear approximation of the phase of the pole at  $\omega = 2$  has a slope of  $-45^{\circ}$ /decade between the frequencies  $\omega = \frac{2}{10}$  and  $\omega = 10 * 2$ .
- 4) The linear approximation of the phase of the zero at  $\omega = 10$  has a slope of +45°/decade between the frequencies  $\omega = \frac{10}{10}$  and  $\omega = 10 \times 10$ .
- 5) The linear approximation of the phase of the complex poles at  $\omega_n = 50$  has a slope of  $-90^{\circ}$ /decade between the frequencies  $\omega = \frac{50}{10}$  and  $\omega = 10 * 50$ .

The individual linear approximations of the phase characteristics for the poles and zeros are shown in the figure. The approximate total phase characteristic,  $\phi_a(\omega)$ , is obtained by adding the phase due to each factor. The exact phase characteristic calculated from

 $\phi(\omega) = -90^{\circ} - \tan^{-1}\frac{\omega}{2} + \tan^{-1}\frac{\omega}{10} - \tan^{-1}\frac{2\zeta\frac{\omega}{50}}{1 - (\frac{\omega}{50})^2}$ is also shown for comparison.



The frequency response of  $G(j\omega)$  can be calculated and plotted using MATLAB. To do this , rewrite  $G(j\omega)$  as:

#### Lecture 28

6-12-2002

$$G(s) = \frac{5 * 0.1(10 + s)}{0.5 * \frac{1}{2500} * s(2 + s)(2500 + 30s + s^2)} = \frac{2500(10 + s)}{s(2 + s)(2500 + 30s + s^2)}$$

In MATLAB, run the following command: Bode( conv([2500],[1 10]) , conv([1 2 0],[1 30 2500]) ); The following plots will be generated





Consider the second-order system shown



The closed-loop transfer function is given by  $T(s) = \frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ 

The frequency response of this system for  $\zeta = 0.2$ ;  $\omega_n = 10$  will appear as shown



We already know that the frequency response will have a maximum magnitude  $M_{p_{\omega}} = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$  which occurs at the resonant frequency  $\omega_r = \omega_n \sqrt{1-2\zeta^2}$ .

The bandwidth,  $\omega_b$  is a measure of the system ability to faithfully reproduce an input signal. It is defined as follows

The bandwidth is the frequency,  $\omega_b$ , at which the frequency response has declined 3 dB from its low-frequency value.

### How does the bandwidth $\omega_b$ vary with $\zeta$ ?

To answer this question, a simulation of the second-order system considered for different values of  $\zeta$  was performed. For each  $\zeta$ , a frequency response of the system was obtained. The bandwidth was then estimated from the frequency response plot. The figure shows the normalized bandwidth  $\frac{\omega_B}{\omega_n}$  versus  $\zeta$ 

#### Lecture 28



The following observations can be made:

• For a given  $\omega_n$ , the bandwidth is inversely proportional to  $\zeta$ . If we recall that the rise time is directly proportional to  $\zeta [T_r = \frac{2.16\zeta + 0.6}{\omega_n}]$ , then one can conclude that

The larger the bandwidth, the faster the system response

Thus desirable frequency-domain specifications are as follows:

- 1. Relatively large bandwidth so that the system time constant  $\tau = \frac{1}{\zeta \omega_n}$  is sufficiently small.
- 2. Relatively small resonant peak  $M_{\rho_{\omega}} = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$ : < 1.5 for example

### **F**REQUENCY RESPONSE MEASUREMENTS

A sine wave can be used to measure the open-loop frequency response of a control system. In practice, a plot of amplitude versus frequency and phase versus frequency will be obtained. From these two plots the open-loop transfer function  $G(j\omega)H(j\omega)$  can be deduced. Similarly the closed-loop frequency response of a control system,  $T(j\omega)$ , may be obtained and the actual transfer function deduced.

### Example

Consider the plot shown.

#### Lecture 28



- Notice that the magnitude plot declines at about  $-20 \, dB/decade$  as  $\omega$  increases between 100 and 1000, and because the phase is  $-45^{\circ}$  and the magnitude is  $-3 \, dB$  at 300 rad/s, one can deduce that one factor is a pole at  $p_1 = 300$ .
- Because the slope of the magnitude curve changes from -20 dB/decade to +20 dB/decade at  $\omega_n = 2450$ , and the phase changes abruptly by nearly 180° passing through 0° at  $\omega_n = 2450$ , we deduce that a pair of complex zeros with  $\zeta = 0.16$ [ the difference in magnitude from the corner frequency ( $\omega_n = 2450$ ) of the asymptotes to the minimum response is  $10 \text{ dB} = M_{p_m}$ ], and  $\omega_n = 2450$  exist.
- Because the slope of the magnitude curve returns to 0dBc/decadeas  $\omega$  exceeds 50,000, we determine that there is a second pole at  $p_2 = 20000$ . This is because the magnitude is -3dB from the asymptote and the phase is 45°at this point.

Therefore the transfer function is

$$T(s) = \frac{\left((\frac{s}{2450})^2 + \frac{0.32}{2450}s + 1\right)}{(\frac{s}{300} + 1)(\frac{s}{20000} + 1)}$$