8. FREQUENCY RESPONSE METHODS

EXAMPLE OF THE DRAWING THE BODE DIAGRAM

The bode diagram of a transfer function G(s), which contains several poles
and zeros is obtained by adding the plot due to each individual pole and
zero. An example will now be given by considering a transfer function
which has all the factors considered.

Example
Draw the bode diagram of the following transfer function

5(1+j0.1w)

G(w)= P
jor (1 +j0.5w) (1 +j0.6%+(%) )

Solution

The factors, in order of their occurrence as frequency increases, are as
follows:

A constant gain K=5

A pole at the origin

A pole at w=2

A zero at =10

A pair of complex poles at w=wn =50

nh W=

First we plot the magnitude characteristic for each individual pole and
zero factor and the constant gain

1) The constant gain is 20log,,5=14dB, as shown in the figure.

2) The magnitude of the pole at the origin extends from zero frequency to
infinite frequencies and has a slope of —20dB/decade intersecting the
0-dB line at w=1, as shown in the figure.

3) The asymptotic approximation of the magnitude of the pole at w=2
has a slope of —20dB/decade beyond the break frequency at w=2. The
asymptotic magnitude below the break frequency is 0dB, as shown in
the figure.

4) The asymptotic approximation for the zero at w=10 has a slope of
+20dB/decade beyond the break frequency at w=10. The asymptotic
magnitude below the break frequency is 0dB, as shown in the figure.

5) The asymptotic approximation for the pair of complex poles has a slope
of —40dB/decade beyond the break frequency at w=wn=50. The
asymptotic magnitude below the break frequency is 0dB, as shown in
the figure. This approximation must be corrected to the actual
magnitude because the damping ratio is {=0.3, and the magnitude
differs appreciably from the approximation.
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The linear approximations of the phase characteristic of the individual
factors are as follows:

1) The phase of the constant gain is 0°.

2) The phase of the pole at the origin is a constant —-90-.

3) The linear approximation of the phase of the pole at w=2 has a slope
of —45°/decade between the frequencies w= 120 and w=10x2.

4) The linear approximation of the phase of the zero at w=10 has a slope
of +45°/decade between the frequencies w= 18 and w=10x10.

5) The linear approximation of the phase of the complex poles at w, =50
has a slope of -90°/decade between the frequencies w= ?8 and
w=10%50.

The individual linear approximations of the phase characteristics for the
poles and zeros are shown in the figure. The approximate total phase
characteristic, ¢a(w), is obtained by adding the phase due to each factor.
The exact phase characteristic calculated from

$(w) =-90° —tan—lci’ +tan1-% ig—tan™

is also shown for comparison.
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The frequency response of G(jw) can be calculated and plotted using
MATLAB. To do this , rewrite G(jw) as:
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2500(10 +5)

5%x0.1(10+5s)
0.5« 25100 *S(2+5)(2500 + 30s +52) S(2+5)(2500 + 30s +s2)

G(S)

In MATLAB, run the following command:

Bode( conv([2500],[1 10]), conv([1 2 0],[1 30 2500]) );

The following plots will be generated

Bode Diagram
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PERFORMANCE SPECIFICATIONS IN THE FREQUENCY DOMAIN

Consider the second-order system shown

> Y(s)

s(s+2lw,)

R(s)

2
n

2
n

R(S) " s24+2twps+w

Y(s)

The closed-loop transfer function is given by

T(s)

6-12-2002

Lecture 28



The frequency response of this system for {=0.2; w, =10 will appear as
shown

1 I:I T T T T T

20log10(T}, dB
1

-10

-14 | ]

_2':' | |
a 5 10 14 20 25 30

We already know thatlthe frequency response will have a maximum
magnitude M,, = —————which occurs at the resonant frequenc
g Po ZCW q Y

WrZWn1l1_2C2 .

The bandwidth, wpis a measure of the system ability to faithfully
reproduce an input signal. It is defined as follows

THE BANDWIDTH IS THE FREQUENCY, ®Wp, AT WHICH THE FREQUENCY RESPONSE
HAS DECLINED 3 dB FrRoM ITS LOW-FREQUENCY VALUE.

How DOES THE BANDWIDTH p VARY WITH C?

To answer this question, a simulation of the second-order system
considered for different values of { was performed. For each {, a
frequency response of the system was obtained. The bandwidth was then
estimated from the frequency response plot. The figure shows the
normalized bandwidth g—f versus {
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The following observations can be made:

* For a given wp, the bandwidth is inversely proportional to { . If we

recall that the rise time is directly proportional to { [ Tr:—2'16£:0'6],

then one can conclude that

The larger the bandwidth, the faster the system response

Thus desirable frequency-domain specifications are as follows:

1. Relatively large bandwidth so that the system time constant ¢ =7— is
sufficiently small.

2. Relatively small resonant peak My, = 1

2012

: < 1.5 for example

FREQUENCY RESPONSE MEASUREMENTS

A sine wave can be used to measure the open-loop frequency response of
a control system. In practice, a plot of amplitude versus frequency and
phase versus frequency will be obtained. From these two plots the
open-loop transfer function G(jw)H(jw) can be deduced. Similarly the
closed-loop frequency response of a control system, T(jw), may be
obtained and the actual transfer function deduced.

Example

Consider the plot shown.
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Notice that the magnitude plot declines at about —20dB/decade as w
increases between 100 and 1000, and because the phase is -45° and
the magnitude is -3dB at 300rad/s, one can deduce that one factor is
a pole at p; =300.

Because the slope of the magnitude curve changes from
-20dB/decade to +20dB/decade at w, =2450, and the phase changes
abruptly by nearly 180° passing through 0°at w, =2450, we deduce
that a pair of complex zeros with {=0.16[ the difference in magnitude
from the corner frequency (wn, =2450) of the asymptotes to the
minimum response is 10dB =M, ], and w, =2450 exist.

Because the slope of the magnitude curve returns to 0 dBc/decadeas w
exceeds 50,000, we determine that there is a second pole at

p2 =20000. This is because the magnitude is -3dB from the asymptote
and the phase is 45°at this point.

Therefore the transfer function is

T(s)=

5 0.32
( 5450)° * 24505 * 1)
(360 * (35000 + D
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