
2. Mathematical Models of Systems

2.1 INTRODUCTION

To understand and control complex systems, one must obtain quantitative
mathematical models of these systems.  The term model, as it is used
and understood by control engineers, means a set of differential
equations that describe the dynamic behavior of the process. The
differential equations describing the dynamic performance of a physical
system are obtained by utilizing the physical laws of the process. For
mechanical systems, one utilizes Newton’s laws, and for electrical systems
Kirchhoff’s  voltage and current laws. Some examples are given  to
demonstrate how to write the differential equations.

2.2 DIFFERENTIAL EQUATIONS OF PHYSICAL SYSTEMS

Mechanical systems

The corner stone for obtaining a mathematical model for any mechanical
system is Newton’s law, 

F =ma

Where

vector sum of all forces applied to each body in a system, newtonsF
(N) or pounds (lb),
vector acceleration of each body with respect to an inertial referencea
frame, m/sec2 or ft/sec2,
mass of the body, kg or slug.m

Consider the simple spring-mass-damper shown below. (This system
could represent, for example, an automobile shock absorber). In this
example, we model the wall friction as a viscous damper, that is, the
friction force is linearly proportional to the velocity of the mass.
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Let  be the spring constant and  the friction coefficient, then summingk b
the forces acting on  and utilizing Newton’s second law yieldsM

M
d2y(t)
dt2 + b

dy(t)
dt + ky(t) = r(t)

 
The above equation is a linear constant coefficient differential equation of
second order.  

Electrical Systems

Consider the RLC circuit shown below.  

Using KCL, one obtains the following integrodifferential equation,

v(t)
R +Cdv(t)dt + 1

L ¶ v(t)dt = r(t)

2.5 THE TRANSFER FUNCTION OF  LINEAR SYSTEMS

The transfer function of a linear system is defined as the ratio of the
Laplace transform of the output variable to the Laplace transform of the
input variable, with all initial conditions assumed to be zero.

Example 1

Find the transfer function of the spring-mass-damper system considered
earlier.

Solution

The differential equation of the  spring-mass-damper system is given by:

M
d2y(t)
dt2 + b

dy(t)
dt + ky(t) = r(t)

The equation can be rewritten with zero initial conditions as follows:
Ms2Y(s) + bsY(s) + kY(s) = R(s)
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Then the transfer function is :

G(s) = Y(s)R(s) =
1

Ms2 + bs + k

Example 2

Find the transfer function of the RC circuit shown below.

Solution

The transfer function of the RC network is obtained by writing the KVL
equation, yielding 

V1(s) = (R + 1
Cs )I(s) ; V2(s) = ( 1

Cs )I(s)

Then the transfer function is :

G(s) = V2(s)
V1(s) =

1
RCs + 1 = 1

s + 1

where  is the time constant of the network.  The single pole of = RC G(s)
is .s = − 1
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