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Abstract—The locational marginal pricing (LMP) methodology
has become the dominant approach in power markets. Moreover,
the dc optimal power flow (DCOPF) model has been applied in the
power industry to calculate locational marginal prices (LMPs), es-
pecially in market simulation and planning owing to its robustness
and speed. In this paper, first, an iterative DCOPF-based algorithm
is presented with the fictitious nodal demand (FND) model to calcu-
late LMP. The algorithm has three features: the iterative approach
is employed to address the nonlinear marginal loss; FND is pro-
posed to eliminate the large mismatch at the reference bus if FND
is not applied; and an offset of system loss in the energy balance
equation is proved to be necessary because the net injection mul-
tiplied by marginal delivery factors creates doubled system loss.
Second, the algorithm is compared with ACOPF algorithm for ac-
curacy of LMP results at various load levels using the PJM 5-bus
system. It is clearly shown that the FND algorithm is a good esti-
mate of the LMP calculated from the ACOPF algorithm and out-
performs the lossless DCOPF algorithm. Third, the DCOPF-based
algorithm is employed to analyze the sensitivity of LMP with re-
spect to the system load. The infinite sensitivity or step change in
LMP is also discussed.

Index Terms—DCOPF, energy markets, fictitious nodal demand
(FND), locational marginal pricing (LMP), marginal loss pricing,
optimal power flow (OPF), power markets, power system planning,
sensitivity analysis.

I. INTRODUCTION

THE locational marginal pricing (LMP) methodology has
been the dominant approach in power markets to calculate

electricity prices and to manage transmission congestion. LMP
has been implemented or is under consideration at a number
of ISOs such as PJM, New York ISO, ISO-New England, Cali-
fornia ISO, and Midwest ISO [1]–[3].

Locational marginal prices (LMPs) may be decomposed into
three components: marginal energy price, marginal congestion
price, and marginal loss price [5], [6]. Several earlier works
[7]–[11] have reported the modeling of LMPs, especially in
marginal loss model and related issues. Reference [7] points
out the significance of marginal loss price, which may differ
up to 20% among different zones in New York Control Area
based on actual data. Reference [8] presents a slack-bus-inde-
pendent approach to calculate LMPs and congestion compo-
nents. Reference [9] presents a real-time solution without re-
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peating a traditional power flow analysis to calculate loss sen-
sitivity for any market-based slack bus from traditional Energy
Management System (EMS) products based on multiple gen-
erator slack buses. Reference [10] demonstrates the usefulness
of dc power flow in calculating loss penalty factors, which has a
significant impact on generation scheduling. The authors of [10]
also point out that it is not advisable to apply predetermined loss
penalty factors from a typical scenario to all cases. Reference
[11] presents LMP simulation algorithms to address marginal
loss pricing based on the dc model.

From the viewpoint of generation and transmission planning,
it is always crucial to simulate or forecast LMPs, which may
be obtained using the traditional production (generation) cost
optimization model, given the data on generation, transmission,
and load [4], [5]. Typically, dc optimal power flow (DCOPF) is
utilized for LMP simulation or forecasting based on production
cost model via linear programming (LP) owing to LP’s robust-
ness and speed. The popularity of DCOPF lies in its natural fit
into the LP model. Moreover, various third-party LP solvers are
readily available to plug into DCOPF model to reduce the de-
velopment effort for the vendors of LMP simulators. In indus-
trial practice, DCOPF has been employed by several software
tools for chronological LMP simulation and forecasting, such as
ABB’s GriveView™, Siemens’ Promod®, GE’s MAPS™, and
PowerWorld [12], [13]. In addition, other literature shows the
acceptability of dc model in power flow studies if the line flow
is not very high, the voltage profile is sufficiently flat, and the

ratio is less than 0.25 [14].
It should be noted that in this paper the production cost is

assumed to have a linear model. A quadratic cost curve can be
represented with piecewise-linear curves to allow the applica-
tion of LP.

In this paper, first, an iterative DCOPF-based algorithm is pre-
sented with the fictitious nodal demand (FND) model to calcu-
late LMPs. The algorithm has three features: the iterative ap-
proach is employed to address the nonlinear marginal loss; FND
is proposed to eliminate the large mismatch at the reference bus
if FND is not applied; and an offset of system loss in the en-
ergy balance equation is proved to be necessary because the net
injection multiplied by marginal delivery factors creates dou-
bled system loss. Section II reviews the LMP calculation with
delivery factors. Section III discusses the observation of a large
nodal mismatch at the reference bus. Section IV presents a new
algorithm for LMP simulation based on FND model to elimi-
nate the nodal mismatch.

Second, the proposed DCOPF-FND-based algorithm is com-
pared with ACOPF algorithm for accuracy of LMP results at
various load levels using the PJM 5-bus system. It is shown that
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the FND algorithm is a good estimate of LMPs calculated from
the ACOPF algorithm and outperforms the lossless DCOPF al-
gorithm. This is discussed in Section V.

Third, the DCOPF-FND-based algorithm is employed to an-
alyze the sensitivity of LMP with respect to the system load.
A simple, explicit equation of LMP sensitivity is presented and
validated. Also, a special case of infinite sensitivity under the
step change of LMP is discussed. If the operating point is close
to the critical load level of LMP step change, the sensitivity is
less reliable and may not be applied to a large variation of load.
This is discussed in Section VI.

Finally, concluding remarks are presented in Section VII.

II. DCOPF MODEL CONSIDERING LOSSES

Earlier studies of LMP calculation with DCOPF ignore the
line losses. Thus, the energy price and the congestion price
follow a perfect linear model with a zero loss price. However,
challenges arise if nonlinear losses need to be considered in
LMP calculations.

This section first reviews the lossless DCOPF model. Then,
the marginal loss factor and marginal delivery factor based on
generation shift factor (GSF) are discussed. Lastly, an iterative
DCOPF model considering losses is presented and discussed.

A. DCOPF Without Losses

The generic DCOPF model [4] without the consideration of
losses can be modeled as the minimization of the total produc-
tion cost subject to energy balance and transmission constraints.
The voltage magnitudes are assumed to be unity and reactive
power is ignored. Also, it is assumed that there is no demand
elasticity. This model may be written as LP

(1)

(2)

(3)

(4)

where

number of buses;

number of lines;

generation cost at Bus ;

generation dispatch at Bus ;

, max. and min. generation output at Bus ;

demand at Bus ;

generation shift factor to line from Bus ;

transmission limit of Line .

It should be noted that the mathematical formulation in this
paper assumes that each bus has one generator and one load for
simplicity of discussion. Actual implementation can be more
complicated considering multiple generators and loads may be
connected to a bus. It should also be noted that the actual GSF
values depend on the choice of slack bus, although the line flow
in (3) based on GSF is the same with different slack buses.

B. Loss Factor and Delivery Factor

The key to consider marginal loss price is the marginal loss
factor, or just loss factor (LF) for simplicity, and the marginal de-
livery factor, or just delivery factor (DF). Mathematically, they
can be written as

(5)

where

marginal delivery factor at Bus ;

marginal loss factor at Bus ;

total loss of the system;

net injection at Bus .

The loss factor and delivery factor can be calculated as fol-
lows. Based on the definition of loss factor, we have

(6)

(7)

where

line flow at line ;

resistance at line .

In the linear dc network, a line flow can be viewed as the ag-
gregation of the contribution from all power sources (generation
as positive source and load as negative source) based on super-
position theorem. This can be written as

(8)

Equation (8) can be utilized to further expand LF as

(9)
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Fig. 1. Three-bus system with Bus B as the reference bus.

Interestingly, the loss factor at a bus may be positive or nega-
tive. When it is positive, it implies that an increase of injection
at the bus may increase the total system loss. If it is negative, it
implies that an increase of injection at the bus may reduce the
total loss. For example, Fig. 1 shows a simple three-bus system
with Bus B as the reference bus. If there is a hypothetical injec-
tion increase at Bus A, and the increased injection is absorbed
by the reference bus (or the two load buses proportionally), the
line flows as well as the losses will increase. Hence, the loss
factor at Bus A is positive. If there is a hypothetical injection
increase at Bus C and it is absorbed by the reference bus (or
the two load buses proportionally), this will reduce the Line BC
flow and then reduce the system loss. Thus, the loss factor at
Bus C is negative.

Consequently, if loss factor is positive, the corresponding de-
livery factor is less than 1. If marginal loss factor is negative,
marginal delivery factor is greater than 1.

C. DCOPF Algorithm Considering Marginal Loss

As shown in (9), loss factor depends on the net injection ,
which is the actual dispatch minus the load at Bus . On the
other hand, generation dispatch may be affected by loss factors
since different generators may be penalized differently based on
their loss factors.

Since is unknown before performing any dispatch, one
way to address this is to have an estimation of dispatch to
obtain an estimated LF at each bus. Then, the estimated loss
factors will be used to obtain new dispatch results. This logic
reasoning leads to the proposed iterative DCOPF approach. In
other words, in the th iteration, the dispatch results from
the th iteration is used to update the estimated and .
Here, in each iteration, an LP-based DCOPF is solved. The
iterative process is repeated until the convergence stop criteria
are reached. After convergence, the LMPs can be obtained
easily from the final iteration. In addition, the estimated
and from the next-to-last iteration will be the same as
the final values. It should be noted that the very first iteration
is a lossless DCOPF in which the estimated loss is zero. The
algorithm can be formulated as follows:

(10)

(11)

(12)

(13)

where

delivery factor at Bus from the previous
iteration;

from the previous iteration.

It is not surprising that this iterative algorithm gives more
accurate results with longer running time than the lossless
DCOPF. However, the number of iterations is acceptable. The
tests in later Sections show that the iterative DCOPF (with the
proposed FND model in Section IV) needs four iterations to
converge for the PJM 5-bus system, even if a very low tolerance
of 0.001 MW is applied for high accuracy. When compared
with ACOPF, the iterative DCOPF model is still much faster
than ACOPF, which may be up to 60 times slower than DCOPF
[15]. In addition, ACOPF requires care in preparing accurate
input data to make it converge. Therefore, the iterative DCOPF
model is advantageous compared to ACOPF, especially for
simulation and planning purpose.

It should be noted that in real-time operation, delivery factors
can be quickly obtained from real-time SCADA/EMS data. Un-
fortunately, this is not a viable option for simulation or a plan-
ning study. Therefore, it is necessary to identify a feasible ap-
proach such as iteration to obtain more accurate delivery factors
for simulation and planning purpose. This is consistent with pre-
vious work [10], which shows that it is not advisable to apply
penalty factors from a typical scenario with dc model to all other
cases.

After obtaining the optimal solution of generation dispatch,
the LMP at any Bus can be calculated with the Lagrangian
function. This function and LMP can be written as

(14)

(15)

where

at Bus B;

Lagrangian multiplier of (11) energy price
of the system price at the reference bus;

Lagrangian multiplier of (12) sensitivity of
the th transmission constraint.

From (15), LMP can be easily decomposed into three com-
ponents: marginal energy price, marginal congestion price and
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marginal loss price. The LMP formulation can be written as
(16)–(19), which are consistent with [1], [2]

(16)

(17)

(18)

(19)

III. ON THE EQUALITY CONSTRAINTS OF ENERGY BALANCE

It should be noted that in (11) is used to offset the dou-
bled system loss caused by the (marginal) loss factor, LF, and
the (marginal) delivery factor, DF. The inclusion of elimi-
nates the overestimated loss issue reported in the previous work
[11]. This is consistent with the fact that the marginal loss (in-
jection multiplied by marginal loss factor) is twice the actual
loss (also referred to as the average loss) in the dc model, since
the line loss is linearly related to the square of bus injection. A
rigorous proof of the validity of (11) is given as follows:

(20)

where

scheduled loss;

actual loss.

Fig. 2. Base case of the PJM 5-Bus example.

TABLE I
LINE IMPEDANCE AND FLOW LIMITS

In the aforementioned derivation, represents the
system net injection at all buses. Therefore, it is called the
scheduled loss of the entire system. Meanwhile, the actual
loss is represented by , which is the sum of the actual
losses at all lines. After the iterative approach converges,
the scheduled loss should be equal to the actual loss, or

.
From the aforementioned derivation, it is apparent

that the net injection multiplied by loss factor, that is,
, doubles the system loss. This

suggests that (11) must include an extra deduction of system
loss when marginal loss factors are applied. Computa-
tionally, the actual loss value from the previous iteration is used
for the current iteration to keep the linearity of the optimiza-
tion formulation. The convergence criteria, i.e., the dispatch
of each generator, will ensure the convergence of , i.e.,

. Equation (11) may be verified with the sample
system shown in Fig. 2 for illustration. The system is slightly
modified from the PJM 5-bus system [1] and will be used for the
rest of this paper. The generation cost at Sundance is modified
from the original $30/MWh to $35/MWh to differentiate its
cost from the Solitude unit for better illustration.

The system can be roughly divided into two areas, a gener-
ation center consisting of Buses A and E with three low-cost
generation units and a load center consisting of Buses B, C, and
D with 900 MWh load and two high-cost generation units. The
transmission line impedances are given in Table I, where the re-
actance is obtained from [1] and the resistance is assumed to be
10% of the reactance. Here only the thermal flow limit of Line
ED is considered for illustrative purpose.
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TABLE II
VERIFICATION OF (11) TO AVOID DOUBLED LOSSES

CAUSED BY MARGINAL DELIVERY FACTORS

TABLE III
DISPATCH RESULTS FROM THE ITERATIVE DCOPF

Fig. 3. Dispatch results for the base case.

Table II clearly shows that the dispatch will give doubled
losses if is excluded from (11). The result is more rea-
sonable if is included.

IV. ITERATIVE DCOPF ALGORITHM WITH FND FOR LOSSES

A. Mismatch at the Reference Bus in the Previous Model

The aforementioned model addresses the marginal loss price
through the delivery factors. However, the line flow constraints
in (12) still assume a lossless network. Meanwhile, the system
energy balance constraint in (11) enforces that the total gener-
ation should be greater than the total demand by the average
system loss. This leads to a mismatch at the reference bus be-
cause the amount of the mismatch has to be absorbed by the
system reference bus. If the amount of demand is a large amount
like a few GW, the system loss may be in the scale of tens to hun-
dreds of MW. It is not accurate to have all the loss absorbed by
the reference.

Taking the PJM 5-bus sample system, the dispatch result is
shown in Table III and Fig. 3. The result shows the nodal mis-
match, defined as Nodal Generation Nodal Demand In-
jections from all connected lines. Although all buses except the

Fig. 4. System with line resistance.

Fig. 5. System with FND to represent line losses.

reference Bus D have zero mismatches, the mismatch at Bus
D is relatively large because it absorbs the total system loss of
8.80 MW. This is a centralized loss model, which means that all
losses are centrally absorbed by the reference bus.

B. FND-Based Iterative DCOPF Algorithm

To address the mismatch issue at the reference bus, it is desir-
able that the line losses are represented in the transmission lines.
Since line flow is represented with GSF in LP-based DCOPF, it
is challenging to include line losses without losing the linearity
of the model.

This paper employs the concept of fictitious nodal demand
(FND) to represent the losses of the lines connected to a bus.
The FND is similar yet different from the fictitious load and
fictitious midpoint bus model in [16]. [16] uses the fictitious load
and midpoint bus to partition an inter-area tie line and eventually
models multi-area OPF. This research work does not need the
fictitious midpoint bus and uses a different representation of the
fictitious loss model, as shown in (21). More important, FND is
applied here to distribute system losses among each individual
line to eliminate a significant mismatch at the reference bus. The
FND model is illustrated in Figs. 4 and 5. With this approach, the
loss in each transmission line is divided into two equal halves,
attached to both buses of that line. Each half is represented as if it
is an extra nodal demand. For each bus, the total of all equivalent
line losses is the proposed FND.

Here the FND at Bus is written as , defined as follows:

(21)

where is the number of lines connected to Bus .
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The line flow can be obtained from the FND calculation
in the previous iteration. Here, is calculated as

(22)

The loss factor calculation may use the same (9); however, the
value of will be different under the new approach of FND.

Therefore, the new iterative DCOPF formulation, which re-
places (10)-(13), can be formulated as

(23)

(24)

(25)

(26)

When the above formulation converges using the generation
dispatch of each unit as the convergence criterion, other pa-
rameters such as the line flows , the delivery factors ,
and the system loss will converge as well. The Ap-
pendix shows the proof of the convergence feature of this new
algorithm.

The detailed procedure of this FND-based iterative DCOPF
algorithm is given as follows:

1) Set LFest

i
0, DFest

i
1, Eest

i
0 (for i

1 2 N and Pest

loss
0.

2) Perform generation dispatch using (23)–(26).

3) Update LFest

i
, DFest

i
, Eest

i
and Pest

loss
using (5), (6),

(9), and (21).

4) Perform another dispatch using (23)–(26).

5) Check the results of the dispatch of each generator with the
previous dispatch. If the difference at one or more buses is
greater than the predefined tolerance, go to Step 3. Otherwise,
go to Step 6.

6) Calculate the three LMP components using (16)–(19).

The result of the proposed new iterative DCOPF model is
shown in Fig. 6. The total loss is distributed to each individual
line. At each bus, the nodal generation, plus incoming flows
from connected lines, and then minus nodal demand is equal
to the FND, which represents half of the losses in all connected
lines. Therefore, the system loss is distributed in each line and
numerically represented by the FND at each bus. The mismatch
at the reference bus, like at any other bus, is just 50% of the
losses of all connected lines, not the total system loss.

Fig. 6. Dispatch results with the FND approach.

V. BENCHMARKING THE FND AND LOSSLESS DCOPF
ALGORITHMS WITH ACOPF-BASED ALGORITHM

In this section, the ACOPF algorithm is briefly discussed.
Then, the FND and lossless DCOPF algorithms are bench-
marked with the ACOPF algorithm using the PJM 5-bus system.
Finally, results are analyzed and explained.

A. ACOPF-Based LMP Algorithm

As a comparison, a model based on ACOPF [4] is presented.
Although this is not typical for market price simulation because
of its relatively slow speed and convergence problem in a fairly
large system, it is presented here for the purposes of comparison
and illustration.

Generally, the ACOPF model can be presented as minimizing
the total generation cost, subject to nodal real power balances,
nodal reactive power balances, transmission limits, generation
limits, bus voltage limits, and so on. Details may be found in [4].
The LMP at each bus from ACOPF formulation is the Lagrange
multiplier of the equality constraint of the nodal real power bal-
ance [15], [17].

B. Test Results From PJM 5-Bus System

This section gives the test results with the slightly modified
PJM 5-bus system as shown in Section III and Fig. 2. In the
ACOPF run, all loads are assumed to have 0.95 lagging power
factors. The generators are assumed to have a reactive power
range between 150 MVar capacitive to 150 MVar inductive such
that reactive power will not be a limiting issue. ACOPF is im-
plemented with MATPOWER package [18].

LMP calculations are performed using the lossless DCOPF
algorithm, the FND-based iterative DCOPF algorithm, and
the ACOPF algorithm in the previous subsection. The LMP
results from the two DCOPF algorithms are benchmarked with
the ACOPF under various load levels from 1.0 to 1.3 per unit
of the base-case load (900 MWh). Tests are performed with
step size of 0.0025 p.u. load increase. All bus loads are varied
proportionally, and the same power factor is kept at each bus
for the ACOPF case. Test results show that the FND algorithm
quickly converges in 4–5 iterations for the PJM 5-bus case even
if a low tolerance of 0.001 MW is applied for high accuracy.
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Fig. 7. Maximum difference of LMP in percentage between each DCOPF al-
gorithm and the ACOPF for the PJM 5-bus system.

Fig. 8. Average difference of LMP in percentage between each DCOPF algo-
rithm and ACOPF for the PJM 5-bus system.

Figs. 7 and 8 plot the maximum difference (MD) and the av-
erage difference (AD) of nodal LMPs between two models. The
MD and AD of LMP at a given load level are given as

MDLMP (%)=

�max
LMP

(1)
i �LMP

(2)
i

LMP
(2)
i

�100

i2f1;2;...;Ng

;

(27)

ADLMP (%) =

N

i=1

LMP �LMP

LMP
� 100

N
(28)

where from the lossless DCOPF algorithm
or the FND algorithm, and from the ACOPF
algorithm.

Sign of MD is determined by the sign of
.

The MD and AD of the generation dispatch, similar to those
for LMP in (27)–(28), are also presented in Figs. 9 and 10.

As Figs. 7–10 show, LMP from the lossless DCOPF algo-
rithm matches ACOPF results for 82% of all load levels tested.
This is consistent with the results reported in the earlier work
[15]. However, the lossless DCOPF causes some significant er-
rors at 18% load levels.

The FND algorithm outperforms the lossless DCOPF algo-
rithm when using ACOPF as a benchmark for LMP as well
as generation dispatch. For example, the LMP results from the
FND algorithm are very close to the ACOPF LMP results with
exceptions at only two particular load levels: 1.0900 and 1.1925

Fig. 9. Maximum difference of generation dispatch between each DCOPF al-
gorithm and the ACOPF for the PJM 5-bus system.

Fig. 10. Average difference of generation dispatch between each DCOPF al-
gorithm and ACOPF for the PJM 5-bus system.

per unit of the base load. As a comparison, the LMP from the
lossless DCOPF produces significant errors in two bands of load
levels: and . Similar observa-
tions can be made for generation dispatch. Since the lossless
DCOPF ignores the line loss, it is not surprising that it per-
forms much more poorly than the FND-based iterative DCOPF
algorithm.

Further tests in IEEE 30-bus System are also performed. The
results are very similar to the results from the PJM 5-bus system.
For instance, the FND DCOPF algorithm gives a much closer
approximation than the lossless DCOPF algorithm in all four
measures, MD of LMP, AD of LMP, MD of generation dispatch,
and AD of generation dispatch.

C. Discussion of the LMP and Dispatch Difference

Here, the causes and implications of the LMP differences
between the FND-based iterative DCOPF algorithm and the
ACOPF algorithm are discussed.

The significant LMP differences between dc model and ac
model are due to the approximation in dc model, which causes
the different sets of marginal units and eventually the different
prices. For example, when the load level is 1.09 per unit of the
base load, the dispatch results are shown in Table IV. With the
ACOPF model, the marginal units are Sundance and Brighton
with the latter being dispatched at very close to its maximum
capacity. However, in the FND-based iterative DCOPF, the
Brighton unit is now dispatched at its maximum capacity,
and the Solitude unit is dispatched for a very small amount.
Thus, the marginal unit for the FND algorithm is Sundance
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TABLE IV
GENERATION DISPATCH RESULTS FROM DCOPF AND ACOPF

and Solitude. Therefore, the different marginal units lead to the
LMP difference because they determine the overall LMP. It
should be noted that once the ACOPF and the FND algorithms
identify the same marginal units at 1.1925 p.u. load level, the
prices will be very close.

It should be noted that a large difference at a particular load
level is almost unavoidable for any approximate approach to cal-
culate LMP owing to the step-change nature of marginal units.
However, as shown in Figs. 7 and 8, a better approximation
should be capable of giving a good LMP prediction for a broader
range of load levels.

This observation has a practical implication for real systems.
The test system can be roughly divided into two areas, a gener-
ation center consisting of Buses A and E and a load center con-
sisting of Buses B, C, and D. In the generation center, there are
abundant low-cost generation resources, while in the load center
there are many loads with expensive generators. The change of
marginal units may cause considerable LMP differences when
the generation center approaches its maximum export. Since the
test system with a generation center and a load center is a typ-
ical case in many systems, it is reasonable to conclude that when
the units in the low-cost, net-exporting area are approaching
its maximum capacity, it is very likely that the difference in
DCOPF and ACOPF may lead to significant price difference
because two approaches may give different marginal units. Spe-
cial care such as verification with ac model may be necessary for
system planners if dc model is the primary approach.

As for the generation dispatch results shown in Figs. 9 and
10, the FND algorithm is very close to ACOPF algorithm for
most cases except the load levels between 1.09 and 1.10. The
difference is not as big as it looks because Figs. 9 and 10 show
relative differences. When a unit is dispatched as a small value,
for example 0.5 MWh in ACOPF, the difference percentage is
as large as 100% when the FND algorithm gives 1.0 MWh. In
this case, the large relative difference is not very surprising.

In addition, large dispatch difference does not necessarily cor-
respond to large LMP difference. As long as the dispatch dif-
ference occurs at the same marginal unit(s), the LMP differ-
ence between ACOPF and an approximation algorithm is not
big enough to be noteworthy.

VI. SENSITIVITY ANALYSIS OF LMP WITH RESPECT TO LOAD

The previous section shows that the FND-based iterative
DCOPF algorithm is a trustable approximation, especially
when compared with lossless DCOPF, of the ACOPF-based
LMP. This section will examine the sensitivity of the LMP
w.r.t. load changes based on the FND-based iterative DCOPF.

TABLE V
�, DF AND LMP WITH RESPECT TO DIFFERENT LOAD LEVELS AT BUS B

A. Sensitivity When There is No Change of Marginal Unit(s)

Based on DCOPF formulation, the sensitivity is due to the
loss model. In other words, if there is no loss considered, the
LMP should remain unchanged if there is a very small change
of demand (as long as there is no new marginal unit). Hence, the
sensitivity of LMP is zero in this case.

The possible nonzero sensitivity of LMP in DCOPF must
be attributed to the loss model. When load grows, loss grows
quadratically. The change of load will lead to a change of not
only DF but and also. This is because the change of delivery
factor in the DCOPF model shall lead to a new and , when
load is varied. In summary, the sensitivity can be written as

(29)

Hence, we have

(30)

Generally, and . This
makes the case with loss different from lossless case.

Table V shows the of Line ED, the DF at Bus B, the LMP
at Bus B, the DF at Bus C, and the LMP at Bus C w.r.t. Bus B
Load from 300 to 330 MW. It can be easily verified that each
variable is linearly related to Bus B Load in Table V. In addition
to Table V, the energy component of LMP, or , is $35/MWh,
constantly. However, this is a special case because the mar-
ginal unit is located at the reference bus, thus is constant
and here. As stated earlier, is usually not
a constant in DCOPF model with loss, that is, .
Also, the GSFs of line DE to Bus B and Bus C are and

, respectively. With all the above data, (30) can be veri-
fied. Taking Bus B as an example (i.e., B), we have
the following calculation based on the 2nd and 3rd columns in
Table V
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Fig. 11. LMP normalized to the base case at each bus with respect to load at
Bus B. The LMPs of base case for the five buses are 15.86, 24.30, 27.32, 35.0,
and 10.0 $/MWh, respectively.

Therefore, we have

On the other hand, from the 4th column in Table V, we have

Hence, the LMP sensitivity is essentially
the same as the value computed with the right-hand side in (30).
This verifies (30). Similar verification can be easily obtained for
Bus C using the 2nd, 5th, and 6th columns. Also, Fig. 11 shows
the LMPs at all buses w.r.t. Bus B load between 300 and 330
MW. The LMPs at each bus are normalized to the base case
when Bus B load is 300 MW.

As shown in Fig. 11, the LMP at marginal unit buses such
as Bus E is constant, which equals to the cost of the local unit
Brighton, because this unit is always a marginal one when Bus
B Load is between 300 to 330 MW. Thus, any load change at
Bus E will be solely provided by Brighton, and the sensitivity
of LMP at Bus E is zero. This is also the case for Bus D because
the local unit Sundance is also a marginal one.

For nonmarginal-unit buses (A, B and C in this study), the
LMPs increase linearly as the load increases. Since the loss is
a quadratic function of the load, the generation is a quadratic
function of the load as well. If there is no change of marginal
units (i.e., due to very small change of load), the dispatch cost
is quadratically related to the load. The LMP, defined as incre-
mental cost over incremental load, should be a linear function
of load, as shown in Fig. 11. Therefore, the LMP sensitivity at
a bus without any marginal unit should be a non-zero constant,
if there is no change of marginal unit.

B. Sensitivity When There is a Change of Marginal Unit(s)

Fig. 12 shows the normalized LMP sensitivity when load
at Bus B is varied in a wider range from 300 to 390 MW.

Fig. 12. LMP sensitivity w.r.t. load at Bus B ranging from 300 to 390 MWh.

Fig. 13. Forecasted LMP and exact LMP.

Again, other loads remain unchanged for simplicity. Fig. 12
shows a stiff change of LMP sensitivity, when Bus B Load
increases from 346.50 to 347.25 MWh (the simulation step size
is 0.75 MWh). The stiff change is due to the change of marginal
units from Brighton and Sundance to Solitude and Sundance,
which changes the nodal LMP prices significantly.

The step change pattern has implications for the applicability
of LMP sensitivities. If some of the present marginal units are
near their generation limits or some transmission lines are nearly
congested, the LMP sensitivities calculated in the present oper-
ating point are less reliable for calculating future LMP at a dif-
ferent load level because a step change of LMP may occur even
with a small load growth.

It should be noted that this step change or infinite sensitivity
is not caused by the dc model. Even with the ac model, the step
change still occurs due to the dependence of LMPs upon the
source of marginal generation. If the load increases to a level that
causes congestion to occur at a new location, then there will be
a new marginal unit that leads to a step change in price. This has
important implications for the present LMP methodology: there
is a significant uncertainty or risk in LMP forecasting due to in-
accurate data or approximate LMP algorithms. This is illustrated
in Fig. 13 in which the LMP error is relatively significant when
the load is between and . Hence, all approximate LMP
algorithms cannot completely eliminate the relatively consider-
able error in a range of load levels in which a step change in
LMPs occurs. However, a better approximation algorithm shall
be able to narrow the range of LMP errors, as demonstrated
by the proposed FND-based DCOPF as opposed to the lossless
DCOPF.
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C. Discussion of LMP Sensitivity

Reference [17] presents a generalized, ACOPF-based model
for LMP sensitivity w.r.t. load and other variables. A matrix for-
mulation needs to be solved to calculate LMP sensitivity even-
tually; therefore, there is no direct, explicit expression available
from [17] for LMP sensitivity to load. This paper does not in-
tend to supplant the work in [17]; instead, this research work
does present an explicit formulation, (30), of LMP sensitivity
to load, based on DCOPF with Delivery Factor, which is nei-
ther applicable nor necessary to the ACOPF model. Hence, with
the concept of Delivery Factor, the LMP sensitivity to load in
dc model is straightforward and simple by easily providing an
overview of LMP sensitivity. This is reasonable considering the
simplifications of the dc model. The observed results match the
analytical (30) and clearly show that the LMP sensitivity is re-
lated to the loss component, is linear in the sensitivity of delivery
factors, and is a constant numerically. In addition, an important
observation is that the LMP sensitivity is numerically small if
there is no new marginal unit, while it is infinite if there is a
change of marginal unit(s).

VII. CONCLUDING DISCUSSIONS

The proposed FND algorithm may be further simplified by
executing only the first two iterations. Basically, the first itera-
tion is essentially a lossless DCOPF run to give an estimation of
delivery factors, FND, and system loss. Then, another DCOPF
is performed based on the estimation. The reason for this sim-
plification is that this research found that an initial estimation
of delivery factors and losses have a bigger impact of LMP and
dispatch than later iterations to refine delivery factors, FND, and
system loss. This can reduce the computational effort since it
does not require the algorithm to run till convergence. There-
fore, it fits a simulation or planning purpose well if the accuracy
is reasonably acceptable. The tests on the PJM 5-bus system and
IEEE 30-bus system show that the two-iteration simplification
of the FND algorithm produces results very close (less than 4%
error in the maximum difference of nodal LMPs) to the fully
converged FND algorithm. Nevertheless, this is a heuristic ob-
servation and needs further research to be credibly applied to
much larger, real systems.

The proposed FND-based iterative DCOPF should be appli-
cable to security (contingency) constrained optimal power flow,
that is, SCOPF or CCOPF, because there is no mathematical dif-
ference between SCOPF and OPF, despite more computational
complexity. In general, additional arrays of GSFs under con-
tingency scenarios may be added to model contingency con-
straints. The security limit can be modeled similar to the line
limits presented in (25).

In summary, this paper first presents loss factors and delivery
factors based on GSF. The offset of system loss in the energy
balance equality constraint is rigorously proved. Then, the chal-
lenge of a considerable nodal mismatch at the reference bus
is presented. The mismatch issue is tackled with the proposed
FND model, in which the total loss is distributed to each indi-
vidual line and there is no nodal mismatch.

This paper also presents a comparison of LMP results from
the lossless DCOPF, the FND-based DCOPF, and the ACOPF

algorithms. The results indicate that FND-based iterative
DCOPF gives better results than lossless DCOPF and repre-
sents a better approximation of ACOPF LMPs.

In addition, this paper presents a simple and explicit formu-
lation of LMP sensitivity with respect to load based on the FND
algorithm. Without the loss component, the LMP sensitivity is
zero if load is varied in a small range. The LMP sensitivity may
be infinite (i.e., a step change in LMP) when the load grows to
a critical level to lead to a new marginal unit. This step-change
nature presents uncertainty and risk in LMP forecast, especially
considering the possible data inaccuracy or algorithm approx-
imation. Therefore, future research could explore approaches
for smoothing out these step changes using penalty or rebate
functions on constraints, and evaluate whether such approaches
would ease forecasting of prices while preserving correct eco-
nomic signals.

APPENDIX

Proof: If converges after the th iteration, ,
, , and all converge for the FND-based DCOPF

algorithm.
Solution: for all .

1) Since line loss in an individual line is a small portion of
the line flow, we have

where the ratio of line loss to line flow of the th line.
Typically, is a small positive number less than 10%

where

2) is the FND, thus we have

where all line flows injecting into Bus .

Since , , and
, we have

where of lines connected to Bus ; the
maximum of all lines connected to Bus .
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3)

where

4)
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