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Using a System Model to Decompose the Effects of
Influential Factors on Locational Marginal Prices

Lizhi Wang and Mainak Mazumdar

Abstract—Locational marginal prices (LMPs) are influenced by
various factors such as load uncertainty, thermal limit, capacity
reserve, and market power. We build a system model to quantita-
tively analyze the effects of these individual factors and their in-
teractions on the mean and standard deviation of the LMPs, as-
suming that the factors are either active or inactive. According
to the sensitivity analysis results from convex quadratic program-
ming, LMPs are piecewise linear functions of demand variation,
which is a key property used in the computation. This paper at-
tempts to answer the following types of questions: (1) To what ex-
tent does market power raise the LMPs above the marginal cost?
(2) What effects will generation or transmission capacity expan-
sion have on relieving high LMPs under high demand scenarios?
An IEEE 30-bus test system is used as an example to demonstrate
our approach.

Index Terms—Capacity expansion, load flow analysis, loca-
tional marginal price (LMP), power system planning, probability,
quadratic programming, sensitivity analysis.

I. INTRODUCTION

THE formation of locational marginal prices (LMPs) is a
location-dependent stochastic process, which is driven by

a combination of various factors [1]. Valenzuela and Mazumdar
[2] categorize these factors into physical factors (which include
production cost, load, generation availability, unit commitment,
and transmission constraints) and economic factors (which in-
clude strategic bidding and load elasticity). One approach to an-
alyzing these factors is to derive analytical expressions for the
sensitivity of LMPs with respect to the parameters of the op-
timal power flow models which determine those prices [3], in-
cluding the sensitivity with respect to bid parameters. A similar
approach has been used to identify market power in the energy
market [4]. Many of these factors are stochastic by nature, and
they jointly affect the LMP probability distribution. It is there-
fore hard to determine from historical data the sole or interactive
contributions of the individual factors (see [5]–[7] for examples
of empirical studies of LMPs). However, such information is im-
portant and instructive in various ways. The exercise of market
power, for example, has been a big concern since the begin-
ning of electricity market deregulation; thus, it will be useful to
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quantitatively distinguish the sole contribution of market power
from that of other factors in raising the LMPs above marginal
cost. Another use of this information is to accurately evaluate
the effects on LMPs when generation or transmission capacity
expansion plans are being made. The objective of this paper is
to build a system model to analyze and decompose the effects
of various influential factors on the LMP probability distribu-
tions, assuming that the factors are binary variables (inactive or
active). In this task, the property that the LMP is a piecewise
linear function of demand variation turns out to be handy.

For ease of exposition, only four of the most important factors
are considered: load uncertainty, thermal limit, capacity reserve,
and market power, numbered by 1, 2, 3, and 4, respectively. (The
effects of other factors, e.g., fuel price changes, are not being
studied here.) Our system model will analyze the contribution
of each single and combination of factors to the means and stan-
dard deviations of LMPs at different nodes. The mean of LMPs
measures the long-term average level of prices, while the stan-
dard deviation is a measure of LMP variability in the same unit
with LMPs ($/MWh). The statistical models for node in hour

are in the following two postulated linear forms:

(1)

(2)

Here, and are the realized mean and stan-
dard deviation of LMPs at node in hour , respectively;
and are, respectively, the mean and standard deviation
given none of the four factors’ presence; for , , 2, 3, 4,

is the sole contribution of factor to the mean of LMPs
at node in addition to , and is the contribution re-
sulting from (exclusively) the interaction between factors and
to the standard deviation of LMPs at node in addition to .
This is illustrated in Fig. 1 for a three-factor case. The rectan-
gular area as a result of three interacting factors is decomposed
to . We will refer to
the coefficients in (1) and (2) as impact coefficients, and our pri-
mary objective is to use the system model to obtain these impact
coefficients. We point out here that the validity of this model is
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Fig. 1. Decomposition of contribution by factors i, j , and k.

based on the binary properties of the factors (either active or in-
active); a different model would be needed if the factors were
instead assumed to be continuous.

Section II describes the system model and the four factors in
more detail. Section III first defines the inputs and outputs of the
system model in III-A; and then, III-B describes the derivation
of outputs from inputs by utilizing the piecewise linear prop-
erty of LMP as a function of demand variation; the approach
used in obtaining impact coefficients from input and output is
given in III-C. A numerical example on the IEEE 30-bus net-
work is given in Section IV, where IV-A gives the data of the
test system, IV-B and IV-C present and interpret the time-aver-
aged impact coefficients and their time variation, respectively.
Use of the system model in evaluating transmission and gen-
eration capacity expansion plans is discussed and illustrated in
Section V. Section VI concludes this paper.

II. SYSTEM MODEL

A. Transmission Network

A set of nodes is connected by a set of transmission lines
. The sets of nodes with demand for and supply of power are

denoted by and , respectively. Depending on whether or not
there is demand for or supply of power, any node in could
belong to either or , or both, or neither.

B. Load Uncertainty

For a certain length of period , demand is as-
sumed to be inelastic: , , ,
where (in MW) is the nominal load at node in hour ,
while is a random variable, representing the demand uncer-
tainty in percentage of . Notice that for a given , the load
uncertainty is assumed to be the same at all nodes, which
means that demands at all nodes are perfectly correlated, so that
they increase or decrease universally by the same percentage.

In our system model, ’s are assumed to be known con-
stants, and ’s are assumed to have known probability distribu-
tions, which can be obtained from the historical load data.

C. Thermal Limit

A dc lossless load flow model is used here, which has been
found to be a good approximation to the more accurate ac load
flow model when thermal limits are the primary concern [8], [9].

Denote by , , and the net injection at node , power
transfer distribution factors (PTDF) matrix, and capacity of
transmission line , respectively. Net injection is the total
power flow going into a node less the total power flow going
out of it. PTDF matrix gives the linear relation between net
injection at each node and power flow through each line. For
all , calculates the magnitude of the
power flow through line . If a transmission line’s thermal limit
is exceeded for a significant length of time, conductors sag
or can be damaged by excessive heating, and the probability
of short-circuiting with the ground increases. Therefore, the
transmission constraints require that power flow going through
any transmission line in either direction must be within the
capacity

D. Capacity Reserve

As part of the ancillary services, certain amounts of genera-
tion and transmission capacities are kept in reserve to be able to
reestablish the balance between load and generation in the event
of a contingency. However, obtaining the exact amount of re-
serve capacity that is “optimal” for all stakeholders is a complex
problem, and the solution may vary depending on the perspec-
tive chosen. The N-1 criterion, for example, requires that the re-
serve level should be sufficient to counter the loss of any single
component (generator or transmission line). On the other hand,
[10] and [11] simply derate the capacities by the forced outage
rates to account for contingencies. As opposed to the above de-
terministic criteria, stochastic criteria have also been proposed
[12]–[14], where transmission line reliability is taken into ac-
count in determining the reserve level.

In our model, as an illustration, we use what we refer to as the
90% criterion. This criterion is to require 10% reserve capacities
of all generators and transmission lines.

In considering the capacity reserve factor, our purpose is not
to study the LMP probability distribution under contingencies
but simply to address the fact that when system security is taken
into account, the system operator would be restricted from
fully utilizing all the available generation and transmission
capacities.

E. Market Power

Following [15], we assume that there is a single generator
at each supply node (we will refer to the generator at node
as generator , which should not give arise to any confusion),
having a marginal cost function

where (in MWh) is the quantity of power generation at node
, (in $/MWh) and (in ) are constant param-
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eters. The generating firms submit a linear supply function for
each of their generators

and they exercise their market power by strategically submitting
’s that may be different from ’s to maximize their profits,

and they are simply assumed not to manipulate on ’s.
Instead of solving ’s using game theoretic models as in

[15], we assume them to be known parameters, and we attempt
to find out quantitatively the effects of their numerical differ-
ences from the ’s. We also assume that the supply functions
stay the same for the entire time horizon.

F. Market Clearing

The electricity market is cleared each hour using the fol-
lowing economic dispatch:

(3)

(4)

(5)

(6)

(7)

(8)

Here, is the capacity of generator , and dual variable
is the LMP at node in hour . The objective function (3) is to
minimize the generation cost (using the firm submitted supply
functions); (4) comes from the definition of net injection, and
the dual variable calculates the marginal cost of serving
unit increment of demand at node in hour , which is con-
sistent with the definition of LMP; (5) and (6) are transmission
constraints under the 90% criterion; (7) is the balancing prop-
erty of a network; and (8) is the generation capacity limit under
the 90% criterion.

The economic dispatch (3)–(8) is a convex quadratic program
and is generally easy to solve in a given hour for a given value
of . It is assumed that generation and transmission capacities
are sufficient to serve demand at all scenarios, so that an optimal
solution to (3)–(8) always exists.

G. Other Factors

The system model can also be used to analyze the effects of
other factors. For example, we can quantitatively examine the
effects of introducing new generators and/or expanding the ca-
pacities of existing transmission lines. This example will be il-
lustrated in Section V, where factors 1, 2, 3, and 4 are all as-
sumed to be active, and four new factors 5, 6, 7, and 8 are intro-
duced.

TABLE I
INTERPRETATION OF INPUT VARIABLES

III. DETERMINATION OF IMPACT COEFFICIENTS

A. Input and Output of the System Model

We define four binary input variables , , , and to
represent the presence of load uncertainty, thermal limit, ca-
pacity reserve, and market power, respectively. Table I gives the
interpretation of these input variables. In reality, all the factors
are active. In the system model, however, some of the factors
need to be assumed absent so that the difference it makes can be
obtained and used to calculate the impact coefficients.

For a given set of input variables , the
output variables of the system model at node are ,

, and . Here is the LMP at node in hour
, which results from the optimal (dual) solution to the economic

dispatch (3)–(8) and is also a function of ; and
are, respectively, the mean and standard deviation of .
Let the probability distribution function (pdf) of be , then

and

B. Deriving Output From Input

This subsection describes the algorithm for deriving
as a function of from the system model for a

given .
When , the economic dispatch (3)–(8) only needs to

be solved once to obtain the output for a given input. When
, regardless of the other input variables, the economic

dispatch (3)–(8) can be represented by the following standard
form parametric convex quadratic program :
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where , , , and are con-
stants, is a positive semi-definite matrix, is a given
direction of variation, and is a scalar parameter. In the eco-
nomic dispatch context, . It is
well known that the optimal solution is a piecewise linear
function of . Reference [16] gives an algorithm that analytically
calculates the break points and the functional form of each seg-
ment. We can use that algorithm to obtain the piecewise linear
function and then calculate other outputs.

We present below the algorithm that we use in our compu-
tational experiments to obtain the break points of . The func-
tional form of within each segment can be
calculated by solving at the lower and upper limit break points
and then connecting them with a straight line. Our algorithm
adopts the basic ideas from [16] but is computationally more
robust.

We first review some preliminaries of parametric convex
quadratic programming. Let be the Wolfe dual of

For a given , the tripartition is
defined as

for an optimal solution

for an optimal solution

Define a maximal complementary solution
as an optimal solution such that

and

It has been shown in [17] and [18] that a maximal complemen-
tary solution can be obtained by solving or using
interior point methods.

We present the algorithm as pseudo codes of two functions:
and . The function inputs of
are coefficients of and , and the

function output is the set of break points of within the entire
range that and remain feasible. The function in-
puts of are coefficients of and and
a range , and the function output is the set of break points
of within .

{Step 1: Calculate , which is the entire range of that
and are feasible:

Step 2: Call , and
return .

}

{Step 1: If is sufficiently small (or both and are
infinity with same sign), then return .
Otherwise, set the initial point and continue.

Step 2: Obtain the tripartition

by solving and using an interior point
method and obtaining a maximal complementary solution

.

Step 3: Calculate , which is the range of that
and have the same tripartition as :

Step 4: Recursively call

and return .

}

C. Calculating Impact Coefficients

Impact coefficients can be calculated by obtaining the system
model output for all possible input variables and then solving a
linear system of equations given below.

The realized values of LMPs according to the system model
are determined by the combination of all factors; thus, they cor-
respond to . So, and

, where and repre-
sent, respectively, the mean and standard deviation of LMPs at
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Fig. 2. IEEE 30-bus network example.

node in hour . Moreover, for all possible binary input vari-
ables , we have the following relation be-
tween the outputs and the impact coefficients:

where and
are the impact coeffi-

cients at node in hour .
In matrix form, we have

(9)

where , , and are, respectively, a constant matrix, the
system outputs, and the impact coefficients

The matrix form for is similar. Therefore, if we obtain
and for all 16 possible

inputs, then the impact coefficients in hour can be calculated
by solving the above linear system of (9).

The inverse of matrix is shown in the equation at the
bottom of the next page, which interprets how the impact co-
efficients are calculated using the outputs. For example,
is the difference of and ; is the
difference of and

.

IV. NUMERICAL EXAMPLE

A. Test Data

We use the IEEE 30-bus network as an example to demon-
strate our approach. As is shown in Fig. 2, a supply node
has a “G” in a circle representing a generator, and a demand
node has an arrow. In this example,

, and
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TABLE II
NODE DATA OF THE 30-BUS EXAMPLE

. Node and transmission line data are given
in Tables II and III, respectively. Most of these data are adopted
from [15] and [19]: ’s, ’s, and ’s are set to be, respec-
tively, 50%, 60%, and 80% of the values in [19]; ’s are set
to be 50% of the equilibrium values in [15]. For all ,
the average nominal load over time horizon is set to be 70%
of in [19]; the relative load chronological changes, shown
in Fig. 3, are estimated using the load data of PJM-E [20];
the demand uncertainty in each hour is assumed to have a

TABLE III
TRANSMISSION LINE DATA OF THE 30-BUS EXAMPLE

truncated normal distribution also estimated using the load data
of PJM-E. Let be the pdf of a normal distribution, and
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Fig. 3. Normalized chronological load change.

TABLE IV
SELECTED IMPACT COEFFICIENTS FOR �

then, the pdf of a truncated normal distribution with the
same mean and standard deviation within is

otherwise.

B. Time-Averaged Impact Coefficients

We obtain the impact coefficients for both mean and standard
deviation of LMPs at all nodes in hour .
Tables IV and V show the time-averaged impact coefficients for

and , respectively. Here

Time averages are also taken in the same manner for other im-
pact coefficients. For the purpose of conserving more space,
only some significant impact coefficients for selected nodes are
given. The “average” rows are the average values over all nodes

TABLE V
SELECTED IMPACT COEFFICIENTS FOR �

in . We have the following observations and interpre-
tations based on these results.

1) Had none of the four factors existed, the LMPs would have
been constantly and universally $39.61/MWh, compared
to the realized mean of $62.43/MWh with a $6.11/MWh
standard deviation on average.

2) As the sole contributions of the individual factors, load
uncertainty, capacity reserve, and market power raise
the mean of LMPs by ,

, and , respectively.
3) The factor thermal limit does not increase LMPs by itself

, nor does the interaction between load
uncertaintyandthermal limit .This isbe-
cause in this particular example, the transmission capacity is
sufficient when 90% criterion is inactive. This result, how-
ever, may not necessarily hold in general, and and/or
could become non-zeros for other network settings.

4) Price difference between nodes is an indication of con-
gestion. Only two impact coefficients and in
Table IV take different values over different nodes, which
means that congestion is not caused by a single factor;
rather, it is a result of the interaction among three or four
factors. For the same reason as explained above, there may
exist other combinations of factors that also contribute to
the congestion, but the significant source of congestion is
still believed to be and . However, those columns
where factor 2 does not appear ( , , , etc.) can be
proven to be constant across nodes regardless of system pa-
rameters, because the only cause of price difference in a dc
lossless model, thermal limit (factor 2), is set to be inactive
in the computation of these columns.

5) It is also interesting to observe that ’s have smaller
magnitudes with opposite signs than those of ’s. This
means that, given the existence of the first three factors,
the incremental effect of market power mitigates conges-
tion. One possible interpretation of this phenomenon is
that market power reduces the relative differences among
supply functions and thus diminishes the preference for
less-expensive generators. Comparing the supply function
parameters ’s and ’s in Table II, we find that they have
a positive correlation, but ’s are less spread out than ’s
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Fig. 4. Time variation of � (t) and � (t).

Without market power, the ratio of supply functions of a
more expensive generator and a less expensive one is

When market power becomes active, ’s substitute zero-
valued ’s, and this ratio becomes

which means that the relative differences among supply
functions shrink. This phenomenon has also been observed
and discussed in [21]. However, we can only conclude that
market power could mitigate congestion in certain cases
under certain assumptions (e.g., how market power is ex-
ercised) but not necessarily so in all circumstances.

6) Load uncertainty is the single primary and decisive source
of LMP volatility, contributing an average standard devi-
ation of to the realized $6.11/MWh
in total. The absence of sole contributions of other fac-
tors is due to their as-
sumed deterministic characteristics. The interactions be-
tween these factors and load uncertainty, however, have
significant contribution to the LMP volatility. It is also in-
dicated in Table V that congestion is a result of the inter-
action among factors.

C. Time Variation of Impact Coefficients

We show in Fig. 4 how the node-averaged mean and standard
deviation of LMPs vary from hour to hour. In Fig. 4

Node-averages are also taken in the same manner for the impact
coefficients, which are shown in Figs. 5 and 6. Only some of the

Fig. 5.

Time variation of impact coefficients for � (t).

Fig. 6. Time variation of impact coefficients for � (t).

impact coefficients are plotted; the omitted ones have little or no
variation over time.

We have the following observations.
1) Coefficients and follow a similar pattern of

time variation with . Recall that represents the
sole contribution of factor 1 at node in hour , and it is the
difference between
and , which represent
the two situations with demand at node in hour being

and .
2) Coefficient , interaction between factors 1 and 3, be-

comes significant when demand is high.
3) We can see from and that congestion oc-

curs during peak hours and that market power mitigates the
congestion.

4) The observations on the impact coefficients for are
similar.
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V. USE OF SYSTEM MODEL IN EVALUATING EXPANSION PLANS

The system model approach described in Section III can
be used to perform sensitivity analysis for the current system,
or to analyze the effects of other factors or system upgrading
decisions. As an illustration, we use the network example in
Section IV to analyze the effects of generator and transmission
line capacity expansion plans.

Suppose investment decisions are to be made to introduce
new generators at nodes 15, 18, and 23, where highest means
and largest standard deviations of LMPs are observed. The
supply function parameters of the new generators are all as-
sumed to take the average values of the previously existing
ones, i.e., , , , ,

, 18, 23. Transmission line 12–15 is also planned to
be expanded by 15% of its current capacity. The questions are:
(1) how would the LMPs be affected, and (2) how effective
would the capacity expansion of each component (generator or
transmission line) be?

Keeping all of the previous factors (load uncertainty, thermal
limit, capacity reserve, and market power) active, we define an-
other four factors, numbered 5, 6, 7, and 8, as the introduction
of generators 15, 18, and 23, and capacity expansions of trans-
mission line 12–15, respectively.

The statistical models for this problem become

where and are, respectively, the forecasted
mean and standard deviation of LMP at node as a result of
these additional factors; as has been defined before,
and are, respectively, the realized mean and standard
deviation before the introduction of new factors.

We obtain the impact coefficients at all nodes
in each hour . Tables VI and VII show the time-
averaged impact coefficients for and , respectively.
As a result of the combined effect of these four factors, the
mean and standard deviation of LMPs are reduced on av-
erage from $62.43/MWh and $6.11/MWh to $49.18/MWh
and $3.24/MWh, respectively. The individual contributions of
factors 5, 6, 7, and 8 to are, respectively, $6.71/MWh,

$7.61/MWh, $8.84/MWh, and $0.62/MWh on average;
and their individual contributions to are, respec-
tively, $0.49/MWh, $1.82/MWh, $2.19/MWh, and

$0.49/MWh on average.
Tables VI and VII can also provide information for any

subset of factors 5, 6, 7, and 8. For example, to answer the
question of “what is the incremental value of expanding the
capacity of transmission line 12–15 by 15% after new genera-
tors have been introduced at nodes 15, 18 and 23?”, we select

TABLE VI
SELECTED IMPACT COEFFICIENTS FOR ~�

TABLE VII
SELECTED IMPACT COEFFICIENTS FOR ~�

those columns in (unabbreviated) Table VI that contain factor
8: . The summation
of these columns is zero. The same result is observed for
Table VII. It indicates that the incremental value of expanding
the capacity of transmission line 12–15 beyond introducing
new generators is zero. This information is useful for decision
makers to avoid redundant investments.

By redefining the factors as unit increments of certain system
parameters (e.g., ’s as fuel prices increase or ’s as more se-
vere market power), sensitivity analysis for the current system
can also be performed in a similar way as illustrated in this
section.
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VI. CONCLUSION

This paper builds a system model to decompose the effects
of influential factors on locational marginal prices. Four factors
(load uncertainty, thermal limit, capacity reserve, and market
power) are considered, and the impact coefficients are calcu-
lated to estimate the contribution of each single factor and their
interactions to the mean and standard deviation of LMPs at each
node.

An IEEE 30-bus network is used as an example to demon-
strate this approach. The system model approach can also be
used to perform sensitivity analysis or to evaluate the effective-
ness of investment plans, e.g, introducing new generators and/or
expanding capacities of transmission lines.

The main contributions of this paper include the following.
1) The system model enables one to answer “what if” ques-

tions, which are generally hard to answer using historical
data.

2) Piecewise linear property of LMPs as functions of demand
variation has been explored. For a given continuous prob-
ability distribution of demand uncertainty and input vari-
ables, the mean and standard deviation of LMPs can be
obtained exactly and efficiently using integration, which is
equivalent to infinitely many simulation samples if Monte
Carlo simulation were to be used instead.

3) Impact coefficients provide insights on the composition
of LMP probability distribution, in terms of mean and
standard deviation. They can also inform and assist power
system evaluation and investment decision making. The
techniques in this paper can also be used for a more com-
plete analysis of the LMP probability distribution (e.g., on
higher moments).

It is worth mentioning that our observations and analyses are
based on the consideration of only four factors with simplifying
assumptions and are only derived for some specified system pa-
rameters. Further research should (1) consider other factors that
affect LMP probability distributions, e.g., fuel prices fluctua-
tion, generator, or transmission line outage; (2) relax the as-
sumption of perfect load correlation among nodes (according to
the load data from PJM [20], the correlation between PJM-E and
PJM-W is 0.8632); (3) relax the assumption that supply func-
tions stay the same over the entire time horizon, and study the
dynamic gaming behavior of market power exercise under dif-
ferent scenarios and inputs; and (4) compare the analyses from
the system model to real-world observations.
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