KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT

EE 306 - Term 192

HW # 1: Three-Phase Circuits

Due Date: (Feb. 2nd for UT Classes and Feb. 3rd for MW Classes)

Problem # 1:

Given the number $A_1 = 5 \angle 30^\circ$ (in polar form) and $A_2 = -3 + j4$ (in rectangular form). Calculate the following, given the answers in both rectangular and polar forms:

- a. $A_1 + A_2$
- b. $A_1 * A_2$
- c. $A_1/(A_2)^*$

Problem # 2:

A load with an impedance of $Z = 25 \angle 53.1^{\circ} \Omega$ is fed from a single-phase source of 220V.

- a. Find the resistance and reactance of the load.
- b. Find the real (active) and imaginary (reactive) power of the load.
- c. Find the power factor of the load, and state whether it is lagging or leading.

Problem # 3:

Prove that the line voltage of a Y-connected generator with an *acb* phase sequence lags the corresponding phase voltage by 30°. Draw a phasor diagram showing the phase and line voltages for this generator.

Problem # 4:

A balanced 3-phase Y-connected load with phase impedance of $20+j15 \Omega$ is connected to a 400-V, 3-phase, 50-Hz supply. Calculate:

- a. the line current.
- b. the real and reactive power supplied.

If a 3-phase Δ -connected capacitor bank is connected parallel to the above load, calculate the capacitance per phase to obtain a resultant power factor of 0.95 lagging.

Problem # 5:

A balanced 3-phase, 173-V, 60-Hz source supplies the two following loads:

- A Δ-connected load with a phase impedance of $(18+j24) \Omega$,
- > A Y-connected load with a phase impedance of $10 \angle 53.13^{\circ} \Omega$.

Find:

- a. The power factor of the entire load.
- b. The total line current supplied.
- c. The total real, reactive, and apparent powers.