A single phase electrical load draws 10 MW at 0.6 power factor lagging.

- a. Find the real and reactive power absorbed by the load
- b. Draw the power triangle.
- c. Determine the kVAR of a capacitor to be connected across the load to raise the power factor to 0.95.

Q2)

Two balanced Y-connected loads of 8 + j5 Ω /phase and 6 - j2 Ω /phase are suupplied by a three-phase source at a line-to-line voltage of 440V. Find:

- a. The line current drawn by each load.
- b. The total line current supplied by the source.
- c. The real, reactive, and complex power absorbed by each load
- d. The real, reactive, and complex power supplied by the source

Q3)

A 345-kV, three-phase transmission line delivers 500 MVA, 0.866 power factor lagging, to a three-phase load connected to its receiving end terminals. Assume that the load is delta connected and the voltage at the receiving end is 345 kV.

- a. Find the complex load impedance per phase.
- b. Calculate all line currents and phase currents.
- c. Find the real and reactive power per phase.
- d. Find the total real and reactive power.

Q4)

A phree-phase substation bus supplies two Y-connected loads that are connected in parallel through a phree-phase feeder with an impedance of $0.5 + j2.0~\Omega$ /phase. Load 1 draws 50 kW at 0.866 lagging power factor, and load 2 draws 36 kVA at 0.9 leading power factor. The line-to-line voltage at the load is 460V. Find:

- a. Impedance of each load per phase.
- b. Total line current through the feeder.
- c. Line-to-line voltage at the substation bus.
- d. Total real and reactive power supplied by the substation.