King Fahd University of Petroleum & Minerals Electrical Engineering Department

DESIGN PROJECT (EE 360-151)

This project is due on 01th December 2015

It is required to design a high-current, low-voltage, shunt DC motor. The output power of the machine is expected to be between (25 to 30) hp. The copper losses including the brush losses should be between 5% and 7% of the output power. The no load power (Rotational Losses) should not exceed 6% of the output power. The motor speed full load speed range is (1000 -1200) rpm. The supply voltage is 240V. The brush voltage drop is 2V each. The magnetization curve is linear and given as $\Phi = 0.01 \text{xI}_f$. The flux per pole should not exceed 30 mwb. The number of poles is up to 6 poles. The armature resistance is between (0.05 + 0.0two-digit serial number) Ω .

Explain all your design steps and give all the machine parameters and variables (P_{dev} , speed, T_{dev} , armature current, armature voltage, Φ_p , K_a , Z, P, I_{path} , R_a , V_t , I_t , I_f , R_f , P_{rot} , P_{input} , T_{out} , η)

Assume any missing data and tabulate them in your report.