EE 360: Homework \# 6

Problems 9-2, 9-6, 9-29, and 9-30
9-2

$$
\text { From Tade 5, } \alpha=1.0107
$$

$$
R_{l c}=\alpha R_{D C}=(1.0107)(0.1298)=0.1312 \Omega / \mathrm{mi}
$$

$$
\begin{aligned}
& 9-6 \\
& \\
& \\
& \text { @ } \quad \mathrm{km}^{\prime}=r e^{-1 / 4}=0,02 e^{-1 / 4}=0,0156 \mathrm{~m} \\
& G M R_{b}=\sqrt{d r^{\prime}}=\sqrt{(0,08)(0,0156)}=0,0353 \mathrm{~m} \\
& \text { (b) } \quad G M D=6+(2(0,04)=4,08 \mathrm{~m} \\
& \text { (C) } \quad X_{L}=0,2794\left(\frac{f}{60}\right) \log \frac{G M D}{G M M L}=0,2794\left(\frac{60}{60}\right) \log \left(\frac{608}{0,0353}\right)=0,6248 \Omega / \mathrm{mi} \\
&=0,3883 \Omega / \mathrm{km} \\
& X_{T}=2 X_{L}=(2)(0,3883)=0,7766 \Omega / \mathrm{km}
\end{aligned}
$$

9-29
$l=40 \mathrm{~km}$ (use shart hime model)
$Z=z l=(0,20+j 0,50)(40)=8+j 20 \Omega$
(a) $A=1,0$
$B=z=8+j 20=21.54 \angle 68.2^{\circ} \Omega$
$c=0$
$D=1,0$
(b) $\quad V_{R}=\frac{33,000}{\sqrt{3}} \angle 0^{\circ}=19,052 \angle 0^{\circ}$
$I_{R}=\frac{10,000}{\sqrt{3}(33)} \frac{1-\cos ^{-1} 0.9}{}=175 \angle-25.8^{\circ} \mathrm{A}$
$V_{S}=A V_{R}+B I_{R}=(1,0)\left(19,052 \mathscr{C}^{\circ}\right)+(8+j 20)\left(11551-25.8^{\circ}\right)$

(c) $\quad I_{R}=\frac{10,000}{\sqrt{3}(33)} \frac{\cos 5^{-1} 0.9}{(10,(1)}=175 \angle 25,8^{\circ} \mathrm{A}$
$V_{s}=(1,0)\left(19,052\left\langle 6^{\circ}\right)+(8+j 20)\left(1115\left\langle 20,8^{\circ}\right)\right.\right.$
$=19,162 \angle 11.3^{\circ} \mathrm{V}$ (mi-t-r-mental $)=33,2 \mathrm{kV}\left(\right.$ hmi $-L_{0}-$ lhini $)$

$$
\begin{aligned}
& A=500 \mathrm{McM}=500,000 \mathrm{ai} \mathrm{mi} / \mathrm{s} \\
& R_{Q_{\text {G20 }}}=\frac{P l}{A}=\frac{(10,60)(5280)}{500,000}=0,1126 \Omega / \mathrm{mi} \\
& R_{x, 60}=\frac{M+T_{\sigma_{0}}}{M+T_{T_{0}}} R_{0,20}=\left(\frac{241,5+60}{24,5+20}\right)(0.1126)=0.1298 \Omega / \mathrm{mi} \\
& X=0.0636 \sqrt{\frac{\mu f}{R_{0}}}=0.0636 \sqrt{\frac{(17(50)}{0.1298}}=1.24 \approx 12
\end{aligned}
$$

$9-30$
$l=80 \mathrm{mi}$ (use meluim length lime nodil)
$A=D=\frac{z y}{2}+1=\frac{(10+j 50)\left(j 30 \times 10^{-5}\right)}{2}+1=0,9925\left(0.1^{\circ}\right.$
$B=z=10+j 50=51 \angle 78,7^{\circ} \Omega$
$C=Y\left(\frac{z y}{4}+1\right)=\left(j 30 \times 10^{-5}\right)\left[\frac{(10+j 50)\left(j 30 \times 10^{-5}\right)}{4}+1\right]=2.99 \times 10^{-4} / 90^{\circ}$
(a) $V_{R}=\frac{230,000}{\sqrt{3}} \angle 0^{\circ}=132,790 \angle 0^{\circ} \mathrm{V}$
$I_{R}=\frac{V_{R}}{Z_{L}}=\frac{133790 \angle 0^{\circ}}{150 / 36,9^{\circ}}=885,3 \angle-36.9^{\circ} \mathrm{A}$
$V_{S}=A V_{R}+B I_{R}=\left(0,9925\left[0.11^{\circ}\right)\left(132,790\left[0^{\circ}\right)+\left(51\left[78.7^{\circ}\right)\left(885,3 L^{\left(-3699^{\circ}\right)}\right.\right.\right.\right.$
$=168,208 \angle 10.4^{\circ} \mathrm{V}$ (mini-b-newtial) $=291.34 \mathrm{kV}($ Imi-b-lini $)$
$I_{S}=C V_{R}+D I_{R}=\left(2.99 \times 10^{-4} / 90^{\circ}\right)\left(132,790\left[0^{\circ}\right)+\left(0.9925\left[0.11^{\circ}\right)\left(885,3\left[-30.99^{\circ}\right)\right.\right.\right.$
$=855.5 \angle-34.7^{\circ} \mathrm{A}$
(b) \quad U.R. $=\frac{V_{S / A}-V_{R}}{V_{R}}=\frac{(291.34 / 0.9925)-230}{230} 100 \%=27.6 \%$
(c) $S_{s}=3 V_{s} I_{s}^{*}=(3)\left(168,208\left(10.9^{\circ}\right)\left(855,5\left(-34,7^{\circ}\right)^{*}=431,7 \times 10^{\circ} / 45.1^{\circ} \mathrm{VA}\right.\right.$ $=(304.7+j 305.8)$ MUA
$P_{s}=304.7 \mathrm{MW}$
$Q_{s}=305.8 \mathrm{MLAR}$
(d) $\quad P_{R}=3 V_{R} I_{R} \cos \theta_{R}=(3)(32,790)(885,3) \cos 36,9-282 \times 10^{4} \mathrm{~W}=282 \mathrm{MW}$

$$
\eta=\frac{P_{R}}{P_{s}}=\frac{282}{304.1} 100 \%=92.6 \%
$$

