King Fahd University of Petroleum \& Minerals

Electrical Engineering Department

EE-360 Problem Session Solution \#1, 2014, 132

Solution 1:

$$
\begin{aligned}
& \mathscr{R}_{\text {ot }}=\mathcal{R}_{c}+\frac{\left(\mathcal{R}_{L}+\mathscr{R}_{g L}\right)\left(\mathcal{R}_{R}+\mathcal{R}_{g R}\right)}{\mathcal{R}_{L}+\mathcal{R}_{g L}+\mathscr{R}_{R}+\mathcal{R}_{g R}} \\
& \mathcal{R}_{L}=\frac{l_{L}}{\mu A_{L}}=\frac{l_{L}}{\mu_{0} \mu_{r} A_{L}}=\frac{1.2 \mathrm{~m}}{2000 \times 4 \pi 10^{-7}(0.07 \mathrm{~m})(0.1 \mathrm{~m})}=68.2 \mathrm{kA} \cdot \mathrm{t} / \mathrm{wb} \\
& \mathcal{R}_{g L}=\frac{l_{g L}}{\mu A_{g L}}=\frac{l_{g L}}{\mu_{0} A_{g L}}=\frac{0.0005 \mathrm{~m}}{4 \pi 10^{-7}(0.07 \mathrm{~m})(0.1 \mathrm{~m})(1.05)}=54.1 \mathrm{kA} \cdot \mathrm{t} / \mathrm{wb} \\
& \mathcal{R}_{R}=\frac{l_{R}}{\mu A_{R}}=\frac{l_{R}}{\mu_{0} \mu_{r} A_{R}}=\frac{1.2 \mathrm{~m}}{2000 \times 4 \pi 10^{-7}(0.07 \mathrm{~m})(0.1 \mathrm{~m})}=68.2 \mathrm{kA} \cdot \mathrm{t} / \mathrm{wb} \\
& \mathcal{R}_{g R}=\frac{l_{g R}}{\mu A_{g R}}=\frac{l_{g R}}{\mu_{0} A_{g R}}=\frac{0.0007 \mathrm{~m}}{4 \pi 10^{-7}(0.07 \mathrm{~m})(0.1 \mathrm{~m})(1.05)}=75.8 \mathrm{kA} \cdot \mathrm{t} / \mathrm{wb} \\
& \mathcal{R}_{c}=\frac{l_{c}}{\mu A_{c}}=\frac{l_{c}}{\mu_{0} \mu_{r} A_{c}}=\frac{\mathcal{R}_{c}}{2000 \times 4 \pi 10^{-7}(0.07 \mathrm{~m})(0.1 \mathrm{~m})}=22.7 \mathrm{kA} \cdot \mathrm{t} / \mathrm{wb} \\
& \mathcal{R}_{R} \\
& \mathcal{R}_{\text {ot }}=22.7+\frac{(68.2+54.1)(68.2+75.8)}{68.2+54.1+68.2+75.8}=88.8 \mathrm{kA} \cdot \mathrm{t} / \mathrm{wb}
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{\text {total }}=\phi_{c}=\frac{\mathcal{F}^{\prime}}{\mathcal{R}_{\text {oot }}}=\frac{N i}{\mathcal{R}_{\text {Rot }}}=\frac{300 \mathrm{t} \times 1 \mathrm{~A}}{88.8 \mathrm{kA} \cdot \mathrm{t} / \mathrm{wb}}=0.0034 \mathrm{wb} \\
& \phi_{L}=\phi_{\text {tot }} \times \frac{\mathcal{R}_{R}+\mathcal{R}_{g R}}{\mathcal{R}_{L}+\mathcal{R}_{g L}+\mathcal{R}_{R}+\mathcal{R}_{g R}}=0.0018 \mathrm{wb} \\
& \phi_{R}=\phi_{\text {tot }} \times \frac{\mathcal{R}_{L}+\mathscr{R}_{Q L}}{\mathcal{R}_{L}+\mathcal{R}_{g L}+\mathcal{R}_{R}+\mathcal{R}_{g R}}=0.0016 \mathrm{wb} \\
& B_{g L}=\frac{\phi_{L}}{A_{g L}}=\frac{0.0018}{0.07 \times 0.1 \times 1.05}=0.245 \mathrm{~T} \\
& B_{g R}=\frac{\phi_{R}}{A_{g R}}=\frac{0.0016}{0.07 \times 0.1 \times 1.05}=0.22 \mathrm{~T}
\end{aligned}
$$

Solution 2:

$$
\begin{aligned}
\phi_{c} & =0.02 \mathrm{wb} \\
N & =1200 \mathrm{t} \\
A & =200 \mathrm{~cm}^{2} \\
B_{C}= & B_{g}=\frac{\phi_{C}}{A}=\frac{0.02 \mathrm{wb}}{200 \times 10^{-4} \mathrm{~mm}^{2}}=1 \mathrm{~T} \\
B_{L}= & B_{R}=\frac{\phi_{c} / 2}{A}=\frac{0.01 \mathrm{wb}}{200 \times 10^{-4} \mathrm{~mm}^{2}}=0.5 \mathrm{~T}
\end{aligned}
$$

Using the cast steel curve to find H from the values of B above:

$$
\begin{aligned}
& H_{C}=800 A \cdot t / m \\
& H_{L}=H_{R}=280 A \cdot t / m \\
& H_{g}=\frac{B_{g}}{\mu_{0}}=\frac{1 T}{4 \pi \times 10^{-7}}=795.77 \times 10^{3} \mathrm{~A} \cdot \mathrm{t} / \mathrm{m} \\
& \mathscr{F}_{g_{1}}=\mathscr{J}_{g_{2}}=H_{g} l_{g}=795.77 \times 10^{3} \times 0.001=795.77 \mathrm{~A} \cdot t \\
& \mathscr{J}_{C}=H_{C} l_{C}=800 \times 0.1=80 \mathrm{~A} \cdot t \\
& \mathscr{\mathcal { F }}_{L}=\mathscr{\mathcal { F }}_{R}=H_{L} l_{L}=280 \times 0.2=56 A \cdot t \\
& \mathscr{e}_{\text {tot }}=2 \times \mathscr{J}_{g}+\mathscr{\mathcal { F }}_{C}+\mathscr{\mathcal { F }}_{L}=1727.54 \mathrm{~A} \cdot t \\
& I=\frac{\mathcal{F}_{t o t}}{N}=\frac{1727.54 \mathrm{~A} \cdot t}{1200 t}=1.44 \mathrm{~A}
\end{aligned}
$$

Solution 3:

$$
\begin{aligned}
& I_{S}=\frac{S}{V_{S}}=\frac{150 \mathrm{kVA}}{240 \mathrm{~V}}=625 \angle-36.8^{\circ} \mathrm{A} \\
& \frac{I_{S}}{a}=\frac{625 \angle-36.8^{\circ} \mathrm{A}}{10}=62.5 \angle-36.8^{\circ} \mathrm{A}=50-j 37.5 \mathrm{~A} \\
& a V_{S}=2400 \angle 0^{\circ} \mathrm{V}=2400+j 0 \mathrm{~V} \\
& a^{2} R_{2}=0.2 \Omega \text { and } a^{2} X_{2}=0.45 \Omega
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E_{1} & =(2400+j 0 \mathrm{~V})+(50-j 37.5 \mathrm{~A})(0.2+j 0.45) \\
& =2427+j 15=2427 \angle 0.35^{\circ} \mathrm{V} \\
I_{m} & =\frac{E_{1}}{X_{m}}=\frac{2427 \angle 0.35^{\circ}}{1550 \angle 90^{\circ}}=1.56 \angle-89.65^{\circ}=0.0095-j 1.56 \mathrm{~A} \\
I_{c} & =\frac{E_{1}}{R_{c}}=\frac{2427 \angle 0.35^{\circ}}{10000}=0.2427-j 0 \mathrm{~A} \\
I_{o} & =I_{m}+I_{c}=0.25-j 1.56 \mathrm{~A} \\
I_{p} & =I_{o}+\frac{I_{S}}{a}=50.25-j 39.06=63.65 \angle-37.850^{\circ} \mathrm{A}
\end{aligned}
$$

Therefore, the primary voltage is

$$
\begin{aligned}
& V_{P}=E_{1}+I_{P} \times\left(R_{1}+j X_{1}\right) \\
&=(2427+j 15)+(50.25-j 39.06)(0.2+j 0.45) \\
&=2455+J 30=2455 \angle 0.7^{\circ} \mathrm{V} \\
& V R=\frac{V_{P} / a-V_{S, f L}}{V_{S . f L}} \times 100 \%=\frac{2455 / 10-240}{240} \times 100 \%=2.3 \% \\
& P_{i}=I_{c}^{2} R_{c}=0.2427^{2} \times 10000=589 \mathrm{~W} \\
& P_{c u}=I_{P}^{2} R_{1}+I_{S}^{2} R_{2}=63.65^{2} \times 0.2+62.5^{2} \times 0.2=1592 \mathrm{~W} \\
& P_{\text {loss }}=P_{i}+P_{c u}=589+1592=2181 \mathrm{~W} \\
& \eta=\frac{P_{\text {out }}}{P_{\text {out }}+P_{\text {loss }}} \times 100 \%=\frac{150 \mathrm{kVA} \times 0.8}{150 \mathrm{kVA} \times 0.8+2.181 \mathrm{~kW}} \times 100 \%=98.2 \%
\end{aligned}
$$

Solution 4:

(a) From O / C test result:

$$
\begin{aligned}
& R_{c s}=\frac{V_{o / c}^{2}}{P_{o / c}}=\frac{120^{2}}{80}=180 \Omega \\
& R_{c p}=a^{2} R_{c}=(450 / 120)^{2} \times 180 \Omega=2530 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& I_{c s}=\frac{V_{o / c}}{R_{c}^{\prime}}=\frac{120 \mathrm{~V}}{180 \Omega}=0.667 \mathrm{~A} \\
& I_{m s}=\sqrt{I_{o}^{2}-I_{c s}^{2}}=\sqrt{4.2^{2}-0.667^{2}}=4.15 \mathrm{~A} \\
& X_{m s}=\frac{V_{o / c}}{I_{m}^{\prime}}=\frac{120}{4.15}=28.92 \Omega \\
& X_{m p}=a^{2} X_{m}^{\prime}=(450 / 120)^{2} \times 28.92 \Omega=406.7 \Omega
\end{aligned}
$$

From S/C test result:

$$
\begin{aligned}
& Z_{e q}=\frac{V_{s / c}}{I_{\text {slc }}}=\frac{9.65 \mathrm{~V}}{22.2 \mathrm{~A}}=0.435 \Omega \\
& R_{e q}=\frac{P_{s / c}}{I_{s / c}^{2}}=\frac{120 \mathrm{~W}}{22.2^{2} \mathrm{~A}}=0.243 \Omega \\
& X_{e q}=\sqrt{Z_{e q}^{2}-R_{e q}^{2}}=\sqrt{0.435^{2}-0.243^{2}}=0.361 \Omega \\
& \theta_{s c}=\tan ^{-1}\left(\frac{X_{e q}}{R_{e q}}\right)=\tan ^{-1}\left(\frac{0.361}{0.234}\right)=57^{\circ} \\
& \text { At full load: }
\end{aligned}
$$

$$
I_{\mathrm{S}_{-} F L}=\frac{S}{V_{S_{-} \text {rated }}}=\frac{10 \mathrm{kVA}}{120 \mathrm{~V}}=83.33 \mathrm{~A}
$$

At power factor $\mathrm{PF}=0.8$ leading,

$$
I_{\mathrm{S}}=83.33 \angle 36.9^{\circ} \mathrm{A}
$$

$$
\begin{aligned}
\frac{V_{P}}{a} & =V_{S}+I_{S} \times\left(R_{e q}+j X_{e q}\right) \\
& =120 \angle 0^{\circ}+\left(83.33 \angle 36.9^{\circ}\right)(0.243)+\left(83.33 \angle 36.9^{\circ}\right)(j 0.361) \\
& =120+20.25 \angle 36.9^{\circ}+30.08 \angle 126.9^{\circ} \\
& =120+16.2+j 12.16-18.06+j 24.05 \\
& =118.14+j 36.21=123.56 \angle 17^{\circ} V \\
V R= & \frac{V_{P} / a-V_{S, f L}}{V_{S . f L}} \times 100 \%=\frac{123.56-120}{120} \times 100 \%=2.96 \%
\end{aligned}
$$

(C) Efficiency at half load:

$$
\begin{gathered}
P_{\text {core }}=\frac{\left(V_{p} / a\right)^{2}}{R_{c s}}=\frac{123.56^{2}}{180}=84.8 \mathrm{~W} \\
P_{c u}=\left(0.5 I_{S}\right)^{2} R_{e q}=41.66^{2} \times 0.243=421.84 \mathrm{~W} \\
\eta=\frac{0.5 P_{\text {out }}}{0.5 P_{\text {out }}+P_{\text {core }}+0.5 P_{c u}} \times 100 \% \\
=\frac{0.5 \times 10 \mathrm{kVA} \times 0.8}{0.5 \times 10 \mathrm{kVA} \times 0.8+84.8+421.84} \times 100 \%=88.75 \%
\end{gathered}
$$

