King Fahd University of Petroleum \& Minerals

Electrical Engineering Department
EE-360 Problem session \#1, 2014, 132

Problem 1:

A ferromagnetic core with a relative permeability of 2000 is shown in figure below. The dimensions are shown in the diagram and the depth of the core is 7 cm . The air gaps on the left and the right side of the core are 0.05 cm and 0.07 cm , respectively. Because of the fringing effects, the effective area of the air gaps is 5% larger than their physical size. If there are 300 turns in the coil wrapped around the centre leg of the core and if the current in the coil is 1 A :
What is the flux in each of the left, centre and right legs of the core?
What is the flux density in each air-gap?

Problem 2:

The shunt-field winding of a DC 2-pole machine has 1200 turns as shown in figure below. The magnetic flux path has a net cross-sectional area of $200 \mathrm{~cm}^{2}$. The iron portion has a mean length of left and right legs of 20 cm and the centre portion of 10 cm . There are two air-gaps each 0.1 cm in length. The magnetization curve below for cast steel may be taken to apply throughout the iron circuit. Determine the shunt field current required to produce a flux of 0.02 Wb in the air gaps

Problem 3:

A $150-\mathrm{kVA}, 2400 / 240-\mathrm{V}, 60-\mathrm{Hz}$, transformer has the following equivalent circuit parameters:

$$
\begin{array}{ll}
R \mathrm{c}=10000 \Omega & X \mathrm{~m}=1550 \Omega \\
R 1=0.2 \Omega & R 2=0.002 \Omega \\
X 1=0.45 \Omega & X 2=0.0045 \Omega
\end{array}
$$

The transformer delivers the rated load at 240 V and 0.8 power factor lagging. Use the exact equivalent circuit to calculate the primary voltage, voltage regulation, and the transformer efficiency

Problem 4:

A $10-\mathrm{kVA}, 450 / 120-\mathrm{V}, 60-\mathrm{Hz}$, transformer gives the following test results:

Open circuit test (HV side open):	120 V,	4.2 A,	80 W
Short circuit test (LV side short):	9.65 V,	22.2 A,	120 W

(a) Derive the approximate equivalent circuit referred to the high-voltage side.
(b) Determine the voltage regulation at full load and 0.8 PF leading.
(c) Determine the efficiency at 50% of full load and 0.8 PF lagging.

