# King Fahd University of Petroleum \& Minerals Department of Electrical Engineering 

EE 360: Home Work \# 3
Due Date (April 7 ${ }^{\text {th }}, 2014$ )
Key Solutions

## Q1) Problem 7-7 (a, b, c)

Solution
(a) $E_{A}=K \phi \omega=\frac{Z P}{2 \pi a} \phi \omega$

In this machine, the number of current paths is

$$
a=m P=(2)(8)=16
$$

The number of conductor is

$$
Z=(64 \text { coils })(10 \text { turns } / \text { coil })(2 \text { conductors } / \text { turn })=1200
$$

The equation for induced voltage is

$$
E_{A}=\frac{Z P}{2 \pi a} \phi \omega
$$

so the required flux is

$$
\begin{aligned}
& 120 \mathrm{~V}=\frac{(1200 \text { cond })(8 \text { poles })}{2 \pi(16 \text { paths })} \phi(3600 \mathrm{r} / \mathrm{min})\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{r}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right) \\
& 120 \mathrm{~V}=36,000 \phi \\
& \phi=0.00333 \mathrm{~Wb}
\end{aligned}
$$

(b) At rated load, the current flow in the generator would be

$$
I_{A}=\frac{25 \mathrm{~kW}}{120 \mathrm{~V}}=208 \mathrm{~A}
$$

There are $a=m P=(2)(8)=16$ parallel current paths through the machine, so the current per path is

$$
I=\frac{I_{A}}{a}=\frac{208 \mathrm{~A}}{16}=13 \mathrm{~A}
$$

(c) The induced torque in this machine at rated load is

$$
\begin{aligned}
& \tau_{\text {ind }}=\frac{Z P}{2 \pi a} \phi I_{A} \\
& \tau_{\text {ind }}=\frac{(1200 \text { cond })(8 \text { poles })}{2 \pi(16 \text { paths })}(0.00333 \mathrm{~Wb})(208 \mathrm{~A}) \\
& \tau_{\text {ind }}=66.1 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

## Q2) Problem 8-3

Solution If $R_{\text {adj }}$ is set to $250 \Omega$, the field current is now

$$
I_{F}=\frac{V_{T}}{R_{\mathrm{adj}}+R_{F}}=\frac{240 \mathrm{~V}}{250 \Omega+75 \Omega}=\frac{240 \mathrm{~V}}{325 \Omega}=0.739 \mathrm{~A}
$$

Since the motor is still at full load, $E_{A}$ is still 218.3 V. From the magnetization curve (Figure P8-1), the new field current $I_{F}$ would produce a voltage $E_{A 0}$ of 212 V at a speed $n_{o}$ of $1200 \mathrm{r} / \mathrm{min}$. Therefore,

$$
n=\left(\frac{E_{A}}{E_{\text {Ao }}}\right) n_{o}=\left(\frac{218.3 \mathrm{~V}}{212 \mathrm{~V}}\right)(1200 \mathrm{r} / \mathrm{min})=1236 \mathrm{r} / \mathrm{min}
$$

Note that $R_{\text {adj }}$ has increased, and as a result the speed of the motor $n$ increased.

## Q3) Problem 8-21

Solution
(a) If $R_{\text {adj }}=100 \Omega$, the total field resistance is $140 \Omega$, and the resulting field current is

$$
I_{F}=\frac{V_{T}}{R_{F}+R_{\mathrm{adj}}}=\frac{120 \mathrm{~V}}{100 \Omega+40 \Omega}=0.857 \mathrm{~A}
$$

This field current would produce a voltage $E_{A o}$ of 82.8 V at a speed of $n_{o}=1000 \mathrm{r} / \mathrm{min}$. The actual $E_{A}$ is

$$
E_{A}=V_{T}-I_{A} R_{A}=120 \mathrm{~V}-(70 \mathrm{~A})(0.12 \Omega)=111.6 \mathrm{~V}
$$

so the actual speed will be

$$
n=\frac{E_{A}}{E_{A o}} n_{o}=\frac{111.6 \mathrm{~V}}{82.8 \mathrm{~V}}(1000 \mathrm{r} / \mathrm{min})=1348 \mathrm{r} / \mathrm{min}
$$

(b) The output power is 10 hp and the output speed is $1000 \mathrm{r} / \mathrm{min}$ at rated conditions, therefore, the torque is

$$
\tau_{\text {out }}=\frac{P_{\text {out }}}{\omega_{m}}=\frac{(10 \mathrm{hp})(746 \mathrm{~W} / \mathrm{hp})}{(1000 \mathrm{r} / \mathrm{min})\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{r}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)}=71.2 \mathrm{~N} \cdot \mathrm{~m}
$$

(c) The copper losses are

$$
P_{\mathrm{CU}}=I_{A}{ }^{2} R_{A}+V_{F} I_{F}=(70 \mathrm{~A})^{2}(0.12 \Omega)+(120 \mathrm{~V})(0.857 \mathrm{~A})=691 \mathrm{~W}
$$

The power converted from electrical to mechanical form is

$$
P_{\text {conv }}=E_{A} I_{A}=(111.6 \mathrm{~V})(70 \mathrm{~A})=7812 \mathrm{~W}
$$

The output power is

$$
P_{\text {out }}=(10 \mathrm{hp})(746 \mathrm{~W} / \mathrm{hp})=7460 \mathrm{~W}
$$

Therefore, the rotational losses are

$$
P_{\mathrm{rot}}=P_{\text {conv }}-P_{\mathrm{ouT}}=7812 \mathrm{~W}-7460 \mathrm{~W}=352 \mathrm{~W}
$$

(d) The input power to this motor is

$$
P_{\mathbb{N}}=V_{T}\left(I_{A}+I_{F}\right)=(120 \mathrm{~V})(70 \mathrm{~A}+0.857 \mathrm{~A})=8503 \mathrm{~W}
$$

Therefore, the efficiency is

$$
\eta=\frac{P_{\mathrm{OUT}}}{P_{\mathrm{IN}}} \times 100 \%=\frac{7460 \mathrm{~W}}{8503 \mathrm{~W}} \times 100 \%=87.7 \%
$$

(e) The no-load $E_{A}$ will be 120 V , so the no-load speed will be

$$
n=\frac{E_{A}}{E_{A o}} n_{o}=\frac{120 \mathrm{~V}}{82.8 \mathrm{~V}}(1000 \mathrm{r} / \mathrm{min})=1450 \mathrm{r} / \mathrm{min}
$$

(f) If the field circuit opens, the field current would go to zero $\Rightarrow \phi$ drops to $\phi_{\text {res }} \Rightarrow E_{A} \downarrow \Rightarrow I_{A} \uparrow \Rightarrow$ $\tau_{\text {ind }} \uparrow \Rightarrow n \uparrow$ to a very high speed. If $I_{F}=0 \mathrm{~A}, E_{A o}=8.5 \mathrm{~V}$ at $1800 \mathrm{r} / \mathrm{min}$, so

$$
n=\frac{E_{A}}{E_{A o}} n_{o}=\frac{230 \mathrm{~V}}{5 \mathrm{~V}}(1000 \mathrm{r} / \mathrm{min})=46,000 \mathrm{r} / \mathrm{min}
$$

(In reality, the motor speed would be limited by rotational losses, or else the motor will destroy itself first.)
(g) The maximum value of $R_{\text {adj }}=200 \Omega$, so

$$
I_{F}=\frac{V_{T}}{R_{F}+R_{\mathrm{adj}}}=\frac{120 \mathrm{~V}}{200 \Omega+40 \Omega}=0.500 \mathrm{~A}
$$

This field current would produce a voltage $E_{A 0}$ of 50.6 V at a speed of $n_{o}=1000 \mathrm{r} / \mathrm{min}$. The actual $E_{A}$ is 120 V , so the actual speed will be

$$
n=\frac{E_{A}}{E_{A o}} n_{o}=\frac{120 \mathrm{~V}}{50.6 \mathrm{~V}}(1000 \mathrm{r} / \mathrm{min})=2372 \mathrm{r} / \mathrm{min}
$$

The minimum value of $R_{\text {adj }}=0 \Omega$, so

$$
I_{F}=\frac{V_{T}}{R_{F}+R_{\mathrm{adj}}}=\frac{120 \mathrm{~V}}{0 \Omega+40 \Omega}=3.0 \mathrm{~A}
$$

This field current would produce a voltage $E_{A o}$ of about 126.4 V at a speed of $n_{o}=1000 \mathrm{r} / \mathrm{min}$. The actual $E_{A}$ is 120 V , so the actual speed will be

$$
n=\frac{E_{A}}{E_{A o}} n_{o}=\frac{120 \mathrm{~V}}{126.4 \mathrm{~V}}(1000 \mathrm{r} / \mathrm{min})=949 \mathrm{r} / \mathrm{min}
$$

## Q4) Problem 8-22

## Solution

(a) If the generator is operating with no load at $1800 \mathrm{r} / \mathrm{min}$, then the terminal voltage will equal the internal generated voltage $E_{A}$. The maximum possible field current occurs when $R_{\mathrm{adj}}=0 \Omega$. The current is

$$
I_{F, \max }=\frac{V_{F}}{R_{F}+R_{\mathrm{adj}}}=\frac{120 \mathrm{~V}}{20 \Omega+0 \Omega}=6 \mathrm{~A}
$$

From the magnetization curve, the voltage $E_{\text {Ao }}$ at $1800 \mathrm{r} / \mathrm{min}$ is 135 V . Since the actual speed is 1800 $\mathrm{r} / \mathrm{min}$, the maximum no-load voltage is 135 V .
The minimum possible field current occurs when $R_{\mathrm{adj}}=40 \Omega$. The current is

$$
I_{F, \max }=\frac{V_{F}}{R_{F}+R_{\mathrm{adj}}}=\frac{120 \mathrm{~V}}{20 \Omega+40 \Omega}=2.0 \mathrm{~A}
$$

From the magnetization curve, the voltage $E_{A \circ}$ at $1800 \mathrm{r} / \mathrm{min}$ is 79.5 V . Since the actual speed is 1800 $\mathrm{r} / \mathrm{min}$, the minimum no-load voltage is 79.5 V .
(b) The maximum voltage will occur at the highest current and speed, and the minimum voltage will occur at the lowest current and speed. The maximum possible field current occurs when $R_{\text {adj }}=0 \Omega$. The current is

$$
I_{F, \max }=\frac{V_{F}}{R_{F}+R_{\mathrm{adj}}}=\frac{120 \mathrm{~V}}{20 \Omega+0 \Omega}=6 \mathrm{~A}
$$

From the magnetization curve, the voltage $E_{\text {Ao }}$ at $1800 \mathrm{r} / \mathrm{min}$ is 135 V . Since the actual speed is 2000 $\mathrm{r} / \mathrm{min}$, the maximum no-load voltage is

$$
\begin{aligned}
& \frac{E_{A}}{E_{A o}}=\frac{n}{n_{o}} \\
& E_{A}=\frac{n}{n_{o}} E_{A o}=\frac{2000 \mathrm{r} / \mathrm{min}}{1800 \mathrm{r} / \mathrm{min}}(135 \mathrm{~V})=150 \mathrm{~V}
\end{aligned}
$$

The minimum possible field current occurs and minimum speed and field current. The maximum adjustable resistance is $R_{\text {adj }}=30 \Omega$. The current is

$$
I_{F, \max }=\frac{V_{F}}{R_{F}+R_{\mathrm{adj}}}=\frac{120 \mathrm{~V}}{20 \Omega+30 \Omega}=2.4 \mathrm{~A}
$$

From the magnetization curve, the voltage $E_{A \circ}$ at $1800 \mathrm{r} / \mathrm{min}$ is 93.1 V . Since the actual speed is 1500 $\mathrm{r} / \mathrm{min}$, the maximum no-load voltage is

$$
\begin{aligned}
& \frac{E_{A}}{E_{A o}}=\frac{n}{n_{0}} \\
& E_{A A}=\frac{n}{n_{0}} E_{A o}=\frac{1500 \mathrm{r} / \mathrm{min}}{1800 \mathrm{r} / \mathrm{min}}(93.1 \mathrm{~V})=77.6 \mathrm{~V}
\end{aligned}
$$

Extra Problems:
Q5) A 250 V DC shunt motor has an armature resistance of 0.25 ohms and a variable field resistance. At a certain loading condition, the motor's generated (induced) voltage is 245 V . Find what will be the motor's new armature current when there is $1 \%$ decrease in the flux value?

$$
\begin{aligned}
& \left(Q_{5}\right) \\
& E_{a}=245 \mathrm{~V} \\
& E_{a}=k \phi \omega \\
& \text { cons. } 1 \rightarrow E_{c}=245 \mathrm{~V} \\
& \begin{array}{l}
F \\
F C_{\text {lond 2 }} \rightarrow E_{a}=\text { ? }
\end{array} \\
& I_{a}=\frac{v_{T}-E_{a}}{R_{a}} \\
& I_{a_{1}}=\frac{250-245}{0.25}=20 . A \\
& \frac{E_{a_{1}}}{F_{i_{2}}}=\frac{k \phi_{1} \omega_{1}}{k \phi_{2} \omega_{2}} \Rightarrow\binom{\omega_{1}=\omega_{2}}{k \text { cost }} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow I_{a_{2}}=\frac{V_{1}-F_{a_{2}}}{0.25}=\frac{250-242.55}{0.25}=29.8 \mathrm{~A}
\end{aligned}
$$

Q6) A4-pole, 500 V DC separately excited generator is running at a speed of 450 rpm . Its field and armature resistances are 35 and 0.007 ohms respectively. If the generator is supplying a 750 kW load and the rotational power loss is 12180 W , find:
a) The armature induced voltage,
b) The input power

Q6) Load $=750 \mathrm{kw}$

$$
\begin{aligned}
& E_{a}=V_{T}+I_{a}\left(R_{a}\right) \\
& I_{a}=I_{L}=\frac{P_{\text {and }}}{V_{T}}=\frac{750 \times 10^{3}}{500} \\
& \quad I_{a}=1500 \mathrm{~A}
\end{aligned}
$$



$$
\Rightarrow \begin{aligned}
\Rightarrow E_{a} & =500+1500(0.007) \\
F_{a} & =510.5 \mathrm{~V}
\end{aligned}
$$

(b)

$$
\left.\begin{array}{rl}
P_{\text {in }} & =P_{\text {out }}+P_{\text {losses }} \\
& =750 \times 10^{3}+(1500)^{2}(0.007)+12180 \\
P_{\text {in }} & =777.93 \mathrm{~kW} \quad \text { (This is neglecting the } \\
\text { Field winding losses }
\end{array}\right)
$$

Q7) A $10-\mathrm{kVA}, 60-\mathrm{Hz}, 2400 / 240-\mathrm{V}$ distribution transformer is reconnected for use as a step-up autotransformer with a $2200-\mathrm{V}$ input.
a) What is the secondary voltage of the autotransformer
b) Determine the rated current for common and series windings of the autotransformer
c) Determine the maximum kVA of the autotransformer with $2200-\mathrm{V}$ input

## Solution:

a) The secondary voltage $V_{H}$ of the transformer is given by

$$
\begin{aligned}
V_{H} & =\frac{N_{S E}+N_{C}}{N_{C}} \times V_{L} \\
& =\frac{240+2400}{2400} \times 2200=2420 \mathrm{~V}
\end{aligned}
$$

b) The rated current for the common and series windings of the autotransformer must be limited to the same ratings as in 2-winding transformer. Therefore,

$$
\begin{aligned}
I_{S E_{-} \text {rated }} & =I_{S_{-} \text {rated }}=\frac{10 \mathrm{kVA}}{240 \mathrm{~V}}=41.67 \mathrm{~A} \\
I_{\mathrm{C}_{-} \text {rated }} & =I_{P_{-} \text {rated }}=\frac{10 \mathrm{kVA}}{2400 \mathrm{~V}}=4.167 \mathrm{~A}
\end{aligned}
$$

c) The maximum kVA of the autotransformer is given by:

$$
S_{\text {out }}=V_{H} I_{S E_{-} \text {rated }}=2420 \times 41.67=100.84 \mathrm{kVA}
$$

Q8) A 3-phase $\Delta / \mathrm{Y}$ transformer is assembled by connecting three $830-\mathrm{VA}, 240 / 120-\mathrm{V}$ single phase transformers. Each transformer parameters are as follow:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{P}}=15.5 \Omega, \mathrm{X}_{\mathrm{P}}=18.2 \Omega, \mathrm{R}_{\mathrm{CP}}=6.54 \mathrm{k} \Omega, \mathrm{X}_{\mathrm{MP}}=4.64 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{S}}=2.4 \Omega, \mathrm{X}_{\mathrm{S}}=2.8 \Omega
\end{aligned}
$$

a) Determine the voltages and power ratings
b) Draw the winding arrangements, equivalent $\mathrm{Y} / \mathrm{Y}$ connections, and per-phase equivalent circuit
problem (8)
(a)

$$
\begin{aligned}
& S_{\partial \varphi}=3 \times 830=2.49 \mathrm{kVA} \\
& V_{L P}(\Delta)=V_{\varphi P}=240 \mathrm{~V} \\
& V_{L S}(Y)=\sqrt{3} V_{\varphi S}=\sqrt{3} \times 120=208 \mathrm{~V}
\end{aligned}
$$



$$
a=1.155
$$

