Solution of Home Work \#7: Unsymmetrical Faults

10.11. Three $15-\mathrm{MVA}, 30-\mathrm{kV}$ synchronous generators A, B, and C are connected via three reactors to a common bus bar, as shown in Figure 83. The neutrals of generators A and B are solidly grounded, and the neutral of generator C is grounded through a reactor of 2.0Ω. The generator data and the reactance of the reactors are tabulated below. A line-to-ground fault occurs on phase a of the common bus bar. Neglect prefault currents and assume generators are operating at their rated voltage. Determine the fault current in phase a.

FIGURE 83
Circuit for Problem 10.11.

Item	X^{1}	X^{2}	X^{0}
G_{A}	0.25 pu	0.155 pu	0.056 pu
G_{B}	0.20 pu	0.155 pu	0.056 pu
G_{C}	0.20 pu	0.155 pu	0.060 pu
Reactor	6.0	Ω	6.0
Ω	6.0	Ω	

The generator base impedance is

$$
Z_{B}=\frac{(30)^{2}}{15}=60 \Omega
$$

The reactor per-unit reactance, and the per-unit generator C neutral reactor are

$$
\begin{aligned}
& X_{R}=\frac{6}{60}=0.1 \mathrm{pu} \\
& X_{n}=\frac{2}{60}=0.3333 \mathrm{pu}
\end{aligned}
$$

The positive-sequence impedance network is shown in Figure 84(a), and the zerosequence impedance network is shown in Figure 84(b).

FIGURE 84
Positive- and zero-sequence impedance networks for Problem 10.11.

The positive-sequence impedance is

$$
\frac{1}{X^{1}}=\frac{1}{0.35}+\frac{1}{0.3}+\frac{1}{0.3} \quad \text { or } \quad X^{1}=0.105
$$

The negative-sequence impedance network is the same as the positive-sequence impedance network, except for the value of the generator negative-sequence reactance. Therefore, the negative-sequence impedance is

$$
\frac{1}{X^{2}}=\frac{1}{0.255}+\frac{1}{0.255}+\frac{1}{0.255} \quad \text { or } \quad X^{2}=0.085
$$

The zero-sequence impedance is

$$
\frac{1}{X^{0}}=\frac{1}{0.156}+\frac{1}{0.156}+\frac{1}{0.26} \quad \text { or } \quad X^{0}=0.06
$$

The line-to-ground fault current in phase a is

$$
I_{a}=3 I_{a}^{0}=\frac{3(1)}{j(0.105+0.085+0.06)}=12 \angle-90^{\circ} \mathrm{pu}
$$

10.14. The zero-, positive-, and negative-sequence bus impedance matrices for a three-bus power system are

$$
\begin{gathered}
\mathbf{Z}_{b u s}^{0}=j\left[\begin{array}{lll}
0.20 & 0.05 & 0.12 \\
0.05 & 0.10 & 0.08 \\
0.12 & 0.08 & 0.30
\end{array}\right] \mathrm{pu} \\
\mathbf{Z}_{b u s}^{1}=\mathbf{Z}_{b u s}^{2}=j\left[\begin{array}{lll}
0.16 & 0.10 & 0.15 \\
0.10 & 0.20 & 0.12 \\
0.15 & 0.12 & 0.25
\end{array}\right] \mathrm{pu}
\end{gathered}
$$

Determine the per unit fault current and the bus voltages during fault for (a) A bolted three-phase fault at bus 2 .
(b) A bolted single line-to-ground fault at bus 2 .
(c) A bolted line-to-line fault at bus 2 .
(d) A bolted double line-to-ground fault at bus 2 .
(a) The symmetrical components of fault current for a bolted balanced three-phase fault at bus 2 is given by

$$
I_{2}^{012}(F)=\left[\begin{array}{c}
0 \\
\frac{1}{Z_{22}^{1}} \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{j 0.20} \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-j 5 \\
0
\end{array}\right]
$$

The fault current is

$$
I_{2}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
-j 5 \\
0
\end{array}\right]=\left[\begin{array}{c}
5 \angle-90^{\circ} \\
5 \angle 150^{\circ} \\
5 \angle 30^{\circ}
\end{array}\right]
$$

For balanced fault we only have the positive-sequence component of voltage. Thus, from (10.98), bus voltages during fault for phase a are

$$
\begin{aligned}
& V_{1}(F)=1-Z_{12}^{1} I_{2}(F)=1-j 0.10(-j 5)=0.5 \\
& V_{2}(F)=1-Z_{22}^{1} I_{2}(F)=1-j 0.20(-j 5)=0.0 \\
& V_{3}(F)=1-Z_{32}^{1} I_{2}(F)=1-j 0.12(-j 5)=0.4
\end{aligned}
$$

(b) From (10.90), the symmetrical components of fault current for a single line-toground fault at bus 2 is given by

$$
\begin{aligned}
I_{2}^{0}(F)=I_{2}^{1}(F)=I_{2}^{2}(F) & =\frac{1.0}{Z_{22}^{1}+Z_{22}^{2}+Z_{22}^{0}} \\
& =\frac{1.0}{j 0.20+j 0.20+j 0.10}=-j 2
\end{aligned}
$$

The fault current is

$$
I_{2}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
-j 2 \\
-j 2 \\
-j 2
\end{array}\right]=\left[\begin{array}{c}
6 \angle-90^{\circ} \\
0 \angle 0^{\circ} \\
0 \angle 0^{\circ}
\end{array}\right]
$$

From (10.98), the symmetrical components of bus voltages during fault are

$$
\begin{aligned}
& V_{1}^{012}(F)=\left[\begin{array}{c}
0-Z_{12}^{0} I_{2}^{0} \\
V_{1}^{1}(0)-Z_{12}^{1} I_{2}^{1} \\
0-Z_{12}^{2} I_{2}^{2}
\end{array}\right]=\left[\begin{array}{l}
0-j 0.05(-j 2) \\
1-j 0.10(-j 2) \\
0-j 0.10(-j 2)
\end{array}\right]=\left[\begin{array}{c}
-0.10 \\
0.80 \\
-0.20
\end{array}\right] \\
& V_{2}^{012}(F)=\left[\begin{array}{c}
0-Z_{22}^{0} I_{2}^{0} \\
V_{2}^{1}(0)-Z_{22}^{1} I_{2}^{1} \\
0-Z_{22}^{2} I_{2}^{2}
\end{array}\right]=\left[\begin{array}{l}
0-j 0.10(-j 2) \\
1-j 0.20(-j 2) \\
0-j 0.20(-j 2)
\end{array}\right]=\left[\begin{array}{c}
-0.20 \\
0.60 \\
-0.40
\end{array}\right]
\end{aligned}
$$

$$
V_{3}^{012}(F)=\left[\begin{array}{c}
0-Z_{32}^{0} I_{2}^{0} \\
V_{3}^{1}(0)-Z_{32}^{1} I_{2}^{1} \\
0-Z_{32}^{2} I_{2}^{2}
\end{array}\right]=\left[\begin{array}{c}
0-j 0.08(-j 2) \\
1-j 0.12(-j 2) \\
0-j 0.12(-j 2)
\end{array}\right]=\left[\begin{array}{c}
-0.16 \\
0.76 \\
-0.24
\end{array}\right]
$$

Bus voltages during fault are

$$
\begin{aligned}
& V_{1}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
-0.10 \\
0.80 \\
-0.20
\end{array}\right]=\left[\begin{array}{c}
0.50 \angle 0^{\circ} \\
0.9539 \angle-114.79^{\circ} \\
0.9539 \angle+114.79^{\circ}
\end{array}\right] \\
& V_{2}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
-0.20 \\
0.60 \\
-0.40
\end{array}\right]=\left[\begin{array}{c}
0.0 \angle 0^{\circ} \\
0.9165 \angle-109.11^{\circ} \\
0.9165 \angle+109.11^{\circ}
\end{array}\right] \\
& V_{3}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
-0.16 \\
0.76 \\
-0.24
\end{array}\right]=\left[\begin{array}{c}
0.36 \angle 0^{\circ} \\
0.9625 \angle-115.87^{\circ} \\
0.9625 \angle+115.87^{\circ}
\end{array}\right]
\end{aligned}
$$

(c) From (10.92) and (10.93), the symmetrical components of fault current for line-to-line fault at bus 2 are

$$
\begin{aligned}
& I_{2}^{0}=0 \\
& I_{2}^{1}=-I_{2}^{2}=\frac{V_{2}(0)}{Z_{22}^{1}+Z_{22}^{2}}=\frac{1}{j 0.20+j 0.20}=-j 2.5
\end{aligned}
$$

The fault current is

$$
I_{2}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
-j 2.5 \\
j 2.5
\end{array}\right]=\left[\begin{array}{c}
0 \\
-4.33 \\
4.33
\end{array}\right]
$$

From (10.98), the symmetrical components of bus voltages during fault are

$$
\begin{gathered}
V_{1}^{012}(F)=\left[\begin{array}{c}
0 \\
V_{1}^{1}(0)-Z_{12}^{1} I_{2}^{1} \\
0-Z_{12}^{2} I_{2}^{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1-j 0.10(-j 2.5) \\
0-j 0.10(j 2.5)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.75 \\
0.25
\end{array}\right] \\
V_{2}^{012}(F)=\left[\begin{array}{c}
0 \\
V_{2}^{1}(0)-Z_{22}^{1} I_{2}^{1} \\
0-Z_{22}^{2} I_{2}^{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1-j 0.20(-j 2.50) \\
0-j 0.20(j 2.5)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.50 \\
0.50
\end{array}\right]
\end{gathered}
$$

$$
V_{3}^{012}(F)=\left[\begin{array}{c}
0 \\
V_{3}^{1}(0)-Z_{33}^{1} I_{2}^{1} \\
0-Z_{32}^{2} 2_{2}^{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1-j 0.12(-j 2.5) \\
0-j 0.12(j 2.5)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.70 \\
0.30
\end{array}\right]
$$

Bus voltages during fault are

$$
\begin{gathered}
V_{1}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
0.75 \\
0.25
\end{array}\right]=\left[\begin{array}{c}
1 \angle 0^{\circ} \\
0.6614 \angle-139.11^{\circ} \\
0.614 \angle+130.11^{\circ}
\end{array}\right] \\
V_{2}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
0.50 \\
0.50
\end{array}\right]=\left[\begin{array}{c}
1 \angle 0^{\circ} \\
0.50 \angle 180^{\circ} \\
0.50 \angle+180^{\circ}
\end{array}\right] \\
V_{3}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
0.70 \\
0.30
\end{array}\right]=\left[\begin{array}{c}
1 \angle 0^{\circ} \\
0.6083 \angle-145.285^{\circ} \\
0.6083 \angle+145.285^{\circ}
\end{array}\right]
\end{gathered}
$$

(d) From (10.94)-(10.96), the symmetrical components of fault current for a double line-to-ground fault at bus 2 is given by

$$
\begin{aligned}
& I_{2}^{1}=\frac{V_{2}(0)}{Z_{22}^{1}+\frac{Z_{22}^{2}\left(Z_{22}^{0}\right)}{Z_{22}^{2}+Z_{22}^{0}}}=-\frac{1}{j 0.20+\frac{j 0.20(j 0.10)}{j 0.20+j 0.10}}=-j 3.75 \\
& I_{2}^{2}=-\frac{V_{2}(0)-Z_{22}^{1} I_{2}^{1}}{Z_{22}^{2}}-\frac{1-j 0.20(-j 3.75)}{j 0.20}=j 1.25
\end{aligned}
$$

$$
I_{2}^{0}=-\frac{V_{2}(0)-Z_{22}^{1} I_{2}^{1}}{Z_{22}^{0}}=-\frac{1-j 0.20(-j 3.75)}{j 0.20}=j 2.5
$$

The phase currents at the faulted bus are

$$
I_{2}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
j 2.5 \\
-j 3.75 \\
j 1.25
\end{array}\right]=\left[\begin{array}{c}
0 \\
5.7282 \angle 139.11^{\circ} \\
5.7282 \angle 40.89^{\circ}
\end{array}\right]
$$

and the total fault current is

$$
I_{2}^{b}+I_{2}^{c}=5.7282 \angle 139.11^{\circ}+5.7282 \angle 40.89^{\circ}=7.5 \angle 90^{\circ}
$$

From (10.98), the symmetrical components of bus voltages during fault are

$$
\begin{gathered}
V_{1}^{012}(F)=\left[\begin{array}{c}
0-Z_{12}^{0} I_{2}^{0} \\
V_{1}^{1}(0)-Z_{12}^{1} I_{2}^{1} \\
0-Z_{12}^{2} I_{2}^{2}
\end{array}\right]=\left[\begin{array}{c}
0-j 0.05(j 2.5) \\
1-j 0.10(-j 3.75) \\
0-j 0.10(j 1.25)
\end{array}\right]=\left[\begin{array}{l}
0.125 \\
0.625 \\
0.125
\end{array}\right] \\
V_{2}^{012}(F)=\left[\begin{array}{c}
0-Z_{22}^{0} I_{2}^{0} \\
V_{2}^{1}(0)-Z_{22}^{1} I_{2}^{1} \\
0-Z_{22}^{2} I_{2}^{2}
\end{array}\right]=\left[\begin{array}{c}
0-j 0.10(j 2.5) \\
1-j 0.20(-j 3.75) \\
0-j 0.20(j 1.25)
\end{array}\right]=\left[\begin{array}{l}
0.25 \\
0.25 \\
0.25
\end{array}\right] \\
V_{3}^{012}(F)=\left[\begin{array}{c}
0-Z_{32}^{0} I_{2}^{0} \\
V_{3}^{1}(0)-Z_{32}^{1} I_{2}^{1} \\
0-Z_{32}^{2} I_{2}^{2}
\end{array}\right]=\left[\begin{array}{c}
0-j 0.08(j 2.5) \\
1-j 0.12(-j 3.75) \\
0-j 0.12(j 1.25)
\end{array}\right]=\left[\begin{array}{l}
0.20 \\
0.55 \\
0.15
\end{array}\right]
\end{gathered}
$$

Bus voltages during fault are

$$
\begin{gathered}
V_{1}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
0.125 \\
0.625 \\
0.125
\end{array}\right]=\left[\begin{array}{c}
0.875 \angle 0^{\circ} \\
0.50 \angle-120^{\circ} \\
0.50 \angle+120^{\circ}
\end{array}\right] \\
V_{2}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
0.25 \\
0.25 \\
0.25
\end{array}\right]=\left[\begin{array}{c}
0.75 \angle 0^{\circ} \\
0 \\
0
\end{array}\right] \\
V_{3}^{a b c}(F)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
0.20 \\
0.55 \\
0.15
\end{array}\right]=\left[\begin{array}{c}
0.90 \angle 0^{\circ} \\
0.3775 \angle-113.413^{\circ} \\
0.3775 \angle+113.413^{\circ}
\end{array}\right]
\end{gathered}
$$

10.15. The reactance data for the power system shown in Figure 85 in per unit on a common base is as follows:

FIGURE 85
The impedance diagram for Problem 10.15.
Obtain the Thévenin sequence impedances for the fault at bus 1 and compute the fault current in per unit for the following faults:
(a) A bolted three-phase fault at bus 1 .
(b) A bolted single line-to-ground fault at bus 1 .
(c) A bolted line-to-line fault at bus 1 .
(d) A bolted double line-to-ground fault at bus 1 .

FIGURE 86
Positive-sequence impedance network for Problem 10.15.

The positive-sequence impedance network is shown in Figure 86, and impedance to the point of fault is

$$
Z^{1}=j \frac{(0.35)(0.65)}{0.35+0.65}=j 0.2275 \mathrm{pu}
$$

Since negative-sequence reactances are the same as positive-sequence reactances, $X^{2}=X^{1}=0.2275$. The zero-sequence impedance network is shown in Figure 87, and impedance to the point of fault is

FIGURE 87
zero-sequence impedance network for Problem 10.15.

$$
Z^{0}=j \frac{(0.25)(0.75)}{0.25+0.75}=j 0.1875 \mathrm{pu}
$$

(a) For a bolted three-phase fault at bus 1 , the fault current is

$$
I_{f}=\frac{1}{j 0.2275}=4.3956 \angle-90^{\circ} \mathrm{pu}
$$

(b) For a bolted single-line to ground fault at bus 1, the fault current is

$$
I_{f}=3 I_{a}^{0}=\frac{3}{j(0.2275+0.2275+0.1875)}=4.669 \angle-90^{\circ} \mathrm{pu}
$$

(c) For a bolted line-to-line fault at bus 1 , the fault current in phase b is

$$
\begin{aligned}
I_{a}^{1} & =\frac{1}{j(0.2275+0.2275)}=-j 2.1978 \mathrm{pu} \\
I_{b}(F) & =-j \sqrt{3} I_{a}^{1}=-3.8067 \mathrm{pu}
\end{aligned}
$$

(d) For a bolted double line-to-line fault at bus 1, we have

$$
\begin{aligned}
I_{a}^{1} & =\frac{1}{j 0.2275++j \frac{(0.2275)(0.1875)}{0.2275+0.1875}}=-j 3.02767 \mathrm{pu} \\
I_{a}^{0} & =\frac{1-(0.2275)(-j 3.02767)}{j 0.1875}=j 1.65975 \mathrm{pu} \\
I(F) & =3 I_{a}^{0}=4.979 \angle 90^{\circ} \mathrm{pu}
\end{aligned}
$$

