Solution of Home Work \# 2

6.3. Use Gauss-Seidel method to find the solution of the following equations

$$
\begin{aligned}
x_{1}+x_{1} x_{2} & =10 \\
x_{1}+x_{2} & =6
\end{aligned}
$$

with the following initial estimates
(a) $x_{1}^{(0)}=1$ and $x_{2}^{(0)}=1$
(b) $x_{1}^{(0)}=1$ and $x_{2}^{(0)}=2$

Continue the iterations until $\left|\Delta x_{1}^{(k)}\right|$ and $\left|\Delta x_{2}^{(k)}\right|$ are less than 0.001 .
Solving for x_{1}, and x_{2} from the first and second equation respectively, results in

$$
\begin{aligned}
& x_{1}=\frac{10}{1+x_{2}} \\
& x_{2}=6-x_{1}
\end{aligned}
$$

(a) With initial estimates $x_{1}^{(\mathrm{U})}=1$ and $x_{2}^{(\mathrm{U})}=1$, the iterative sequence becomes

$$
\begin{aligned}
& x_{1}^{(1)}=\frac{10}{1+1}=5 \\
& x_{2}^{(1)}=6-5=1 \\
& x_{1}^{(2)}=\frac{10}{1+1}=5 \\
& x_{2}^{(2)}=6-5=5
\end{aligned}
$$

(b) With initial estimates $x_{1}^{(0)}=1$ and $x_{2}^{(0)}=2$, the iterative sequence becomes

$$
\begin{aligned}
x_{1}^{(1)} & =\frac{10}{1+2}=3.3333 \\
x_{2}^{(1)} & =6-3.3333=2.6666 \\
x_{1}^{(2)} & =\frac{10}{1+2.6666}=2.7272 \\
x_{2}^{(2)} & =6-2.7272=3.2727 \\
x_{1}^{(3)} & =\frac{10}{1+3.2727}=2.3404 \\
x_{2}^{(3)} & =6-2.3404=3.6596 \\
x_{1}^{(4)} & =\frac{10}{1+3.6596}=2.1461 \\
x_{2}^{(4)} & =6-2.1461=3.8539 \\
x_{1}^{(5)} & =\frac{10}{1+3.8539}=2.0602
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}^{(b)}=6-2.0602=3.9398 \\
& x_{1}^{(6)}=\frac{10}{1+3.9398}=2.0244 \\
& x_{2}^{(6)}=6-2.0244=3.9756 \\
& x_{1}^{(7)}=\frac{10}{1+3.9756}=2.0098 \\
& x_{2}^{(7)}=6-2.00098=3.9902 \\
& x_{1}^{(8)}=\frac{10}{1+3.9902}=2.0039 \\
& x_{2}^{(8)}=6-2.0039=3.9961 \\
& x_{1}^{(9)}=\frac{10}{1+3.9961}=2.0016 \\
& x_{2}^{(9)}=6-2.0244=3.9984 \\
& x_{1}^{(10)}=\frac{10}{1+3.9984}=2.0006 \\
& x_{2}^{(10)}=6-2.0006=3.9994
\end{aligned}
$$

6.6. In the power system network shown in Figure 51, bus 1 is a slack bus with $V_{1}=1.0 \angle 0^{\circ}$ per unit and bus 2 is a load bus with $S_{2}=280 \mathrm{MW}+j 60 \mathrm{Mvar}$. The line impedance on a base of 100 MVA is $Z=0.02+j 0.04$ per unit.
(a) Using Gauss-Seidel method, determine V_{2}. Use an initial estimate of $V_{2}^{(0)}=$ $1.0+j 0.0$ and perform four iterations.
(b) If after several iterations voltage at bus 2 converges to $V_{2}=0.90-j 0.10$, determine S_{1} and the real and reactive power loss in the line.

FIGURE 51
One-line diagram for Problem 6.6.

$$
y_{12}=\frac{1}{0.02+j 0.04}=10-j 29
$$

The per unit load at bus 2 is

$$
S_{2}=-\frac{280+j 60}{100}=-2.8-j 0.60
$$

Starting with an initial estimate of $V_{2}^{(0)}=1.0+j 0.0$, the voltage at bus 2 computed from (6.28) for three iterations are

$$
\begin{aligned}
& V_{2}^{(1)}=\frac{\frac{-2.8+j 0.60}{1.00000-j 0.00000}+(10-j 20)(1)}{10-j 20}=0.92000-j 0.10000 \\
& V_{2}^{(2)}=\frac{\frac{-2.8+j 0.60}{0.92000+j 0.10000}+(10-j 20)(1)}{10-j 20}=0.90238-j 0.09808 \\
& V_{2}^{(3)}=\frac{\frac{-2.8+j 0.60}{0.90238-j 0.09808}+(10-j 20)(1)}{10-j 20}=0.90050-j 0.10000
\end{aligned}
$$

(b) Assuming voltage at bus 2 converges to $V_{2}=0.9-j 0.1$, the line flows are computed as follows

$$
\begin{aligned}
& I_{12}=y_{12}\left(V_{1}-V_{2}\right)=(10-j 20)[(1+j 0)-(0.9-j 0.10]=3.0-j 1.0 \\
& I_{21}=-I_{12}=-3.0+j 1.0 \\
& S_{12}=V_{1} I_{12}^{*}=(1.0+j 0.0)(3.0+j 1.0)=3+j 1 \mathrm{pu} \\
& \\
& =300 \mathrm{MW}+j 100 \mathrm{Mvar} \\
& S_{21}=V_{2} I_{21}^{*}=(0.9-j 0.1)(-3.0-j 1.0)=-2.8-j 0.6 \mathrm{pu} \\
& \\
& =-280 \mathrm{MW}-j 60 \mathrm{Mvar}
\end{aligned}
$$

The line loss is

$$
S_{L 12}=S_{12}+S_{21}=(300+j 100)+(-280-j 60)=20 \mathrm{MW}+j 40 \mathrm{Mvar}
$$

The slack bus real and reactive power are $P_{1}=300 \mathrm{MW}$, and $Q_{1}=100 \mathrm{Mvar}$.
6.7. Figure 6.6 shows the one-line diagram of a simple three-bus power system with generation at bus 1 . The voltage at bus 1 is $V_{1}=1.0 \angle 0^{\circ}$ per unit. The scheduled loads on buses 2 and 3 are marked on the diagram. Line impedances are marked in per unit on a 100 MVA base. For the purpose of hand calculations, line resistances and line charging susceptances are neglected.
(a) Using Gauss-Seidel method and initial estimates of $V_{2}^{(0)}=1.0+j 0$ and $V_{3}^{(0)}=$ $1.0+j 0$, determine V_{2} and V_{3}. Perform two iterations.
(b) If after several iterations the bus voltages converge to

$$
\begin{aligned}
& V_{2}=0.90-j 0.10 \mathrm{pu} \\
& V_{3}=0.95-j 0.05 \mathrm{pu}
\end{aligned}
$$

determine the line flows and line losses and the slack bus real and reactive power. Construct a power flow diagram and show the direction of the line flows.
(c) Check the power flow solution using the Ifgauss and other required programs. (Refer to Example 6.9.) Use a power accuracy of 0.00001 and an acceleration factor of 1.0 .

(a) Line impedances are converted to admittances

$$
\begin{aligned}
& y_{12}=-j 30 \\
& y_{13}=\frac{1}{j 0.0125}=-j 80 \\
& y_{23}=\frac{1}{j 0.05}=-j 20
\end{aligned}
$$

At the P-Q buses, the complex loads expressed in per units are

$$
\begin{aligned}
& S_{2}^{s c h}=-\frac{(400+j 320)}{100}=-4.0-j 3.2 \mathrm{pu} \\
& S_{3}^{s c h}=-\frac{(300+j 270)}{100}=-3.0-j 2.7 \mathrm{pu}
\end{aligned}
$$

For hand calculation, we use (6.28). Bus 1 is taken as reference bus (slack bus). Starting from an initial estimate of $V_{2}^{(0)}=1.0+j 0.0$ and $V_{3}^{(0)}=1.0+j 0.0, V_{2}$ and V_{3} are computed from (6.28) as follows

$$
\begin{aligned}
V_{2}^{(1)} & =\frac{\frac{S_{2}^{s c h^{*}}}{V_{2}^{()^{*}}}+y_{12} V_{1}+y_{23} V_{3}^{(0)}}{y_{12}+y_{23}} \\
& =\frac{\frac{-4.0+j 3.2}{1.0-j 0}+(-j 30)(1.0+j 0)+(-j 20)(1.0+j 0)}{-j 50} \\
& =0.936-j 0.08
\end{aligned}
$$

and

$$
\begin{aligned}
V_{3}^{(1)} & =\frac{\frac{S_{3}^{s c h^{*}}}{V_{3}^{(0)^{*}}}+y_{13} V_{1}+y_{23} V_{2}^{(1)}}{y_{13}+y_{23}} \\
& =\frac{\frac{-3.0+j 2.7}{1-j 0}+(-j 80)(1.0+j 0)+(-j 20)(0.936-j 0.08)}{-j 100} \\
& =0.9602-j 0.046 \quad
\end{aligned}
$$

For the second iteration we have

$$
\begin{aligned}
V_{2}^{(2)} & =\frac{\frac{-4.0+j 332}{0.936+j 0.08}+(-j 30)(1.0+j 0)+(-j 20)(0.9602-j 0.046)}{-j 50} \\
& =0.9089-j 0.0974
\end{aligned}
$$

and

$$
\begin{aligned}
V_{3}^{(2)} & =\frac{\frac{-3.0+j 2.7}{0.9602+j 0.046}+(-j 80)(1.0+j 0)+(-j 20)(0.9089-j 0.0974)}{(-j 100)} \\
& =0.9522-j 0.0493
\end{aligned}
$$

The process is continued and a solution is converged with an accuracy of 5×10^{-5} per unit in seven iterations as given below.

$$
\begin{array}{ll}
V_{2}^{(3)}=0.9020-j 0.0993 & V_{3}^{(3)}=0.9505-j 0.0498 \\
V_{2}^{(4)}=0.9004-j 0.0998 & V_{3}^{(4)}=0.9501-j 0.0500 \\
V_{2}^{(5)}=0.9001-j 0.1000 & V_{3}^{(5)}=0.9500-j 0.0500 \\
V_{2}^{(6)}=0.9000-j 0.1000 & V_{3}^{(6)}=0.9500-j 0.0500 \\
V_{2}^{(7)}=0.9000-j 0.1000 & V_{3}^{(7)}=0.9500-j 0.0500
\end{array}
$$

The final solution is

$$
\begin{aligned}
& V_{2}=0.90-j 0.10=0.905554 \angle-6.34^{\circ} \quad \mathrm{pu} \\
& V_{3}=0.95-j 0.05=0.9513 \angle-3.0128^{\circ} \quad \mathrm{pu}
\end{aligned}
$$

(b) With the knowledge of all bus voltages, the slack bus power is obtained from (6.27)

$$
\begin{aligned}
P_{1}-j Q_{1}= & V_{1}^{*}\left[V_{1}\left(y_{12}+y_{13}\right)-\left(y_{12} V_{2}+y_{13} V_{3}\right)\right] \\
= & 1.0[1.0(-j 30-j 80)-(-j 30)(0.9-j 0.1)- \\
& (-j 80)(0.95-j 0.05)] \\
= & 7 \Pi-i 7 \cap
\end{aligned}
$$

or the slack bus real and reactive powers are $P_{1}=7.0 \mathrm{pu}=700 \mathrm{MW}$ and $Q_{1}=7.0$ $\mathrm{pu}=700 \mathrm{Mvar}$.

To find the line flows, first the line currents are computed. With line charging capacitors neglected, the line currents are

$$
\begin{aligned}
& I_{12}=y_{12}\left(V_{1}-V_{2}\right)=(-j 30)[(1.0+j 0)-(0.90-j 0.10)]=3.0-j 3.0 \\
& I_{21}=-I_{12}=-3.0+j 3.0 \\
& I_{13}=y_{13}\left(V_{1}-V_{3}\right)=(-j 80)[(1.0+j 0)-(0.95-j .05)]=4.0-j 4.0 \\
& I_{31}=-I_{13}=-4.0+j 4.0 \\
& I_{23}=y_{23}\left(V_{2}-V_{3}\right)=(-j 20)[(0.90-j 0.10)-(0.95-j .05)]=-1.0+j 1.0 \\
& I_{32}=-I_{23}=1.0-j 1.0
\end{aligned}
$$

The line flows are

$$
\begin{aligned}
S_{12}=V_{1} I_{12}^{*} & =(1.0+j 0.0)(3.0+j 3)=3.0+j 3.0 \mathrm{pu} \\
& =300 \mathrm{MW}+j 300 \mathrm{Mvar}
\end{aligned}
$$

$$
\begin{aligned}
S_{21}=V_{2} I_{21}^{*} & =(0.90-j 0.10)(-3-j 3)=-3.0-j 2.4 \mathrm{pu} \\
& =-300 \mathrm{MW}-j 240 \mathrm{Mvar} \\
S_{13}=V_{1} I_{13}^{*} & =(1.0+j 0.0)(4.0+j 4.0)=4.0+j 4.0 \mathrm{pu} \\
& =400 \mathrm{MW}+j 400 \mathrm{Mvar} \\
S_{31}=V_{3} I_{31}^{*} & =(0.95-j 0.05)(-4.0-j 4.0)=-4.0-j 3.6 \mathrm{pu} \\
& =-400 \mathrm{MW}-j 360 \mathrm{Mvar} \\
S_{23}=V_{2} I_{23}^{*} & =(0.90-j 0.10)(-1.0-j 1.0)=-1.0-j 0.80 \mathrm{pu} \\
& =-100 \mathrm{MW}-j 80 \mathrm{Mvar} \\
S_{32}=V_{3} I_{32}^{*} & =(0.95-j 0.05)(1+j 1)=1.0+j 0.9 \mathrm{pu} \\
& =100 \mathrm{MW}+j 90 \mathrm{Mvar}
\end{aligned}
$$

and the line losses are

$$
\begin{aligned}
& S_{L 12}=S_{12}+S_{21}=0.0 \mathrm{MW}+j 60 \mathrm{Mvar} \\
& S_{L 13}=S_{13}+S_{31}=0.0 \mathrm{MW}+j 40 \mathrm{Mvar} \\
& S_{L 23}=S_{23}+S_{32}=0.0 \mathrm{MW}+j 10 \mathrm{Mvar}
\end{aligned}
$$

The power flow diagram is shown in Figure 6.7, where real power direction is indicated by \rightarrow and the reactive power direction is indicated by \mapsto. The values within parentheses are the real and reactive losses in the line.

FIGURE 53
Power flow diagram of Problem 6.7 (powers in MW and Mvar).

