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Vectorial FDTD Technique for the Analysis of
Optical Second-Harmonic Generation

Mohammad A. Alsunaidi, Husain M. Al-Mudhaffar, and Husain M. Masoudi

Abstract—A vectorial time-domain simulator of integrated
optical structures containing second-order nonlinearities has
been formulated and tested. The technique is based on the direct
time-domain representation of the coupled nonlinear Maxwell’s
equations of the propagating fields. The proposed algorithm
accounts for the full optical coefficient tensor, input depletion,
and device-wave interactions, where the inaccuracies associated
with the scalar and paraxial approximations are avoided. Error
analysis associated with the proposed scheme is also given. The
proposed model should find application in a wide range of device
structures and also in the analysis of short-pulse propagation in
second-order nonlinear devices.

Index Terms—Finite-difference time-domain (FDTD) method,
integrated optics, optical waveguides, second-harmonic generation
(SHG), second-order nonlinearity.

I. INTRODUCTION

T HE design cycle of modern photonic devices can be
shortened considerably by the utilization of accurate

device models. The need for accurate device models has
never been so great, especially with the increased progress
in materials technology and fabrication methods. Fortunately,
the availability of fast and powerful computers has made de-
tailed numerical simulation an efficient and reliable tool for
researchers and engineers. Accurate analytical models of non-
linear devices, however, are extremely difficult to obtain, and so
several numerical methods have been proposed and developed.
One of the early methods to be used in nonlinear integrated
optics simulation is the beam propagation method [1] with a
recent extension to vectorial applications developed in [2]. This
method is relatively computationally efficient, but it is aimed at
modeling wave propagation in devices where the primary flow
of energy is along a single principal direction. Other modeling
methods in this area include the finite-element method [3]
and the finite-difference time-domain (FDTD) method [4]–[7].
The FDTD is substantially more robust than other methods
because it directly solves for fundamental quantities. It also
avoids the simplifying assumptions of conventional asymptotic
behavior and paraxial propagation. The time-domain nature of
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the method allows for a number of useful analyses including
transient analysis, reflections, time-pulse applications, and
temporal nonlinear effects. In most practical nonlinear inte-
grated optical devices, wave polarization does occur and the
vector nature of the propagating fields is important. The pre-
viously reported vectorial FDTD algorithms for second-order
nonlinearity introduce an additional step in the solution where
the relationship between the electric flux density and the
electric field is employed. This procedure results in a mixed
implicit–explicit FDTD scheme that is solved by iteration. The
combined expression for the total field, as in [7], is problematic.
It works only when the field components of the pump input
and the generated waves are separable: a fact that makes such
approaches lose generality. Occasionally, input depletion is
ignored to relax the strong coupling inherent in the problem.
In this letter, an alternative formulation of the full-wave model
for second-harmonic generation (SHG) in optical structures
containing second-order nonlinearity is presented. In this for-
mulation, a set of field equations is introduced for individual
waves (fundamental and second harmonic) with appropriate
nonlinear coupling. The algorithm is useful in the analysis of
nonlinear effects in many optical structures and for arbitrary
input conditions including pulsed inputs.

II. FORMULATIONS

The propagation of electromagnetic radiation through cer-
tain class of crystals causes the nonlinear dielectric properties
of the material to be polarized. This polarization can be ex-
pressed mathematically using terms proportional to the non-
linear susceptibility and to the propagating electric field
components inside the structure. The nonlinear response of the
material to such property leads to an exchange of energy be-
tween fields propagating at different frequencies. This response
is utilized in the SHG in which energy from one field propa-
gating at frequency , the fundamental field, is transferred to
a field propagating at double the frequency , the
second-harmonic field. The linear and nonlinear polarizations
are expressed, respectively, as

(1)

(2)

where the nonlinear optical coefficient tensor is given by

(3)
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In vectorial form, the nonlinear polarization of the fundamental
and the second-harmonic waves are given, respectively, by

(4)

and

(5)

For the sake of illustration and without loss of generality, 2-D
GaAs-based waveguides with crystal axes matching the prin-
cipal axes are considered. In this case, the only nonzero ele-
ments in the nonlinear optical coefficient tensor are , ,
and . Upon inspection of (4) and (5) and setting

, Maxwell’s nonlinear equations for the fundamental field
and the generated second-harmonic field can be written, respec-
tively, as

(6)

(7)

(8)

and

(9)

(10)

(11)

III. SIMULATION RESULTS

The time and space derivatives in the model equations are
approximated using the usual leap-frog scheme. For example,

Fig. 1. Transverse profiles of the TM input (fundamental) and generated TE
second-harmonic fields.

the update equation for the second-harmonic -component of
the electric field is given by (12), shown at the bottom of the
page, where . It should be noted here that,
in the general full-wave case when more nonzero elements
exist in the tensor, the computation algorithm is still valid.
However, more computations will be needed for the evaluation
of the coefficients of the FDTD equations. For example, in
(12), five more terms will appear in the nonlinear polarization
part involving , , and . To increase the accuracy of the
computations, the perfectly matched layer (PML) absorbing
boundaries are used for the truncation of the computation
domain. A symmetric GaAs-based dielectric slab waveguide
is considered to test the proposed FDTD algorithm. It con-
sists of a 0.44- m-thick guiding layer sandwiched between
two 3- m-thick AlAs layers. The arrangements of the field
components for both the fundamental and second harmonic
are made according to the standard Yee cell. The excitation
field is a continuous-wave transverse-magnetic (TM) signal

at a fundamental wavelength of m and
an amplitude of 5.0 A m. The transverse profile of the ex-
citation corresponds to the first TM guided mode at the given
operating frequency. The nonlinear susceptibility is taken as

pm/V. A long simulation time corresponding to
tens of cycles was allowed to ensure steady-state results. The
mesh parameters were carefully chosen to effectively reduce
numerical dispersion especially in the propagation direction.
The algorithm is tested for several matching scenarios. First,
no matching is considered such that the level of coupling
between the input and the generated waves depends entirely

(12)
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Fig. 2. Normalized SH power along the nonlinear waveguide (solid line: no
matching; dotted line: perfect match; dotted–dashed line: QPM.

on the phase difference between them. This phase differ-
ence is defined by the effective indices of the two coexisting
guided modes. The transverse profiles for the fundamental TM
mode and the second-harmonic transverse-electric (TE) mode
are shown in Fig. 1. The simulation verifies the coupling of
second-harmonic energy on the first odd TE mode. Second, the
effective refractive index of the first odd guided mode of the
TE field at m is perfectly matched to the first even
guided mode of the TM input field by numerically changing the
value of the refractive index of the guiding layer at . Third,
the quasi-phase-matching (QPM) technique is implemented
by alternately switching the nonlinearity ON and OFF along
the waveguide with periodicity equal to the coherence period

. The normalized SH power curves for
all scenarios are shown in Fig. 2. As expected, energy exchange
between the fundamental field and the second-harmonic field
takes place periodically during every coherence period if no
matching technique is implemented. If, however, the two waves
are perfectly matched, the energy exchange will be continuous,
resulting in a coherent build-up of the second-harmonic energy.
The analytical value of the coherence length is used
to test the convergence of the algorithm. Fig. 3 shows the
percent error in the simulated values of the coherence length
versus the grid factor which is defined as the number of grid
points per one wavelength. The percent error is defined as

. The proposed
FDTD algorithm produces errors of less than 0.5% for grid
factors around 200.

Fig. 3. Percent error in simulated coherence length versus the grid factor.

IV. CONCLUSION

A new vectorial nonparaxial FDTD algorithm to model SHG
in nonlinear optical devices has been proposed and tested. The
developed model can be utilized to efficiently analyze and study
different optical structures. The extension of the model to appli-
cations involving pulsed excitations and different device nonlin-
earities is a future work.
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