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Spurious Modes in the DuFort–Frankel
Finite-Difference Beam Propagation Method

Husain M. Masoudi and John M. Arnold

Abstract—In this letter, we analyze the DuFort–Frankel beam
propagation method (BPM) which is a modification to the known
explicit finite-difference beam propagation method (EFD-BPM)
and found that there are some precautions that must be taken
before using the method. The accuracy and the efficiency of this
method has been shown and compared with the most popular
FD-BPM’s.

Index Terms— Beam propagation method, finite-difference
analysis, modeling, numerical analysis, optical waveguide theory,
partial differential equations.

I. INTRODUCTION

T HE BEAM propagation method (BPM) is one of the most
attractive techniques to analyze optical devices due to its

simplicity and applicability to a variety of optical devices. For
modeling three-dimensional devices, parallel processing can
be used to analyze long and complicated devices in a reason-
able amount of time [1]–[3]. In previous work, we showed
that the explicit finite-difference (EFD) BPM and the real
space (RS) BPM are well suited to the parallel environment
due to their explicit nature [2]–[3]; also the parallel EFD
has been successfully extended to analyze nonlinear three-
dimensional (3-D) optical waveguides containing second order
nonlinearities [4]–[5]. Although the parallel EFD is simple
and efficient, the disadvantage with this method is that it
is conditionally stable. Decreasing the transverse mesh sizes
requires that the longitudinal step size be decreased as well for
the algorithm to remain stable, and this has the consequence
of longer computational time [6]. One way to improve the
stability of the EFD is to use the DuFort–Frankel technique
[7] which is also explicit. The DuFort–Frankel technique uses
the same equations as the EFD with small modification [1],
[7]–[8], and for simplicity we will refer to this method as the
modified EFD or MEFD. The MEFD has two advantages over
the EFD; the first is that the stability condition is improved,
resulting in a relaxed longitudinal step size. The second is that
the total mesh points can be divided into two sets, odd and
even (leapfrog arrangement), where only one set need be used
in computations, giving a 50% reduction in execution time
while retaining the same accuracy [1], [8]. Another important
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advantage to the MEFD is that it is still highly parallel.
However, during our analysis of this method we found that
there are spurious fields that are coupled with the true field
[1] and this problem has not been addressed by the previously
published work on this method [8]. In this work we show the
analysis of the MEFD together with some numerical solutions
that remove/reduce the error fields. As a first step toward 3-D
parallel implementations of the MEFD we restrict the analysis
in this work to 2-D because it is easier to analyze and the
results can be compared with analytical solutions. Then later
we compare with other FD-BPM’s in terms of accuracy and
efficiency.

II. NUMERICAL METHOD

Starting with the parabolic equation for a two-dimensional
TE field

(1)

where is a reference refractive index, is the free-
space wave number and is the refractive index and
using the central finite-difference approximation for the partial
derivatives leads to the discrete EFD equation [6]

(2)

where and
. represents the discretization of the transverse

coordinate , and and are the transverse mesh size and
the longitudinal step size, respectively. It is known that the
EFD is stable under the condition

[6]. On the other hand, if the field in
(2) is replaced by its average value as

[7] this leads to the DuFort–Frankel method
(or the MEFD) [1], [8]

(3)

where and . We may
notice that both the EFD and the MEFD need two initial fields
to start the algorithm. It has been observed from analyzing the
MEFD (as will be seen later) that there are some spurious
fields that propagate with the true field. For later reference,
we will refer to this field as aghostfield because it takes on
the shape of the true fields propagating in the waveguide. This
problem is caused by the initial excitation of the method. In our
analysis we use the power spectral method in [9] to calculate
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Fig. 1. The modal power spectrum for the slab waveguide excited with the
TE0 guided mode using the MEFD-BPM with�x = 0.05�m,�z = 0.1�m
and a total distance of 102.4�m. (a) Before correction. (b) After correction.

the mode indices from the BPM fields. First, the correlation
function between the input and the marched field is evaluated
numerically during the course of propagation, then the result
is multiplied with the Hanning window function and Fourier
transformed. The propagation constant is computed by locating
the peak in the spectral domain. If the waveguide is excited
with the first guided mode, the spectral analysis should display
only one peak that belongs to this mode. However, numerical
tests with the BPM in general showed that, for large, some
very little radiation fields are excited due to the discretization
where these radiation can be minimized by reducing[1].

III. N UMERICAL ANALYSIS

In the following, we use a symmetric slab waveguide with
core and cladding refractive indices of 1.2 and air respectively.
The waveguide width is 1m, the total window size is equal to
11 m and the wavelength is 1m. In all that follows, the first
guided mode is excited at the input. Fig. 1 shows the power
spectrum for the propagation of the first guided mode inside
the slab waveguide using the MEFD. The top figure is caused
by setting the initial two fields to be equal. From the figure
we may notice the existence of two peaks and a summation of
other little peaks. The largest peak belongs to the true guided
mode, the second largest peak belongs to the guidedghost
mode and the little peaks belong to radiation ghost fields. The
ghost fields are the error associated to the false excitation of
the input fields. Analysis of these ghost fields showed that the
shape of the field is similar to the true fields propagating in the
waveguides and for this reason we call it aghost. The peak
of the power spectrum of the ghost fields reduces by reducing

. A full mathematical analysis, which we will elaborate
elsewhere, shows that the dispersion relation of (3) for modal
fields with variation along the -direction allows
two values of for each transverse eigenvector. After several

(a) (b)

(c) (d)

Fig. 2. The percentage error difference of the first guided-mode FD-BPM’s
effective index using the CN(+), the RS(�), the EFD (o) and the MEFD
(�) as a function of the longitudinal step size�z for (a)�x = 0.5�m, (b)
�x = 0.25�m, (c)�x = 0.1 �m and (d)�x = 0.05�m.

Fig. 3. Comparison between the speed of the CN, RS, EFD, MEFD, and
MEFD2 as a function of the transverse mesh points. MEFD2 is the MEFD
using half of the discretised mesh points.

numerical tests, we found two ways to reduce or eliminate
the error caused by the initial excitation. Our numerical
investigations include excitation using the unstable forward
Finite-Difference instead of the central difference, for the
partial derivative with respect to, for the first step of the
propagation. Also other BPM’s (Crank–Nicolson (CN), real
space (RS), fast Fourier transform (FFT) and EFD) have
been used to provide two initial fields for the MEFD. All
these techniques produce very little difference compared to the
results in Fig. 1(a). If the initial field is a guided mode, one
can find two fields spaced from each other by multiplying
one of the field with the modal phase factor assuming that
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the medium does not change over that distance. Tests on this
technique showed the complete removal of the spurious field.
The second technique is to use two equal initial fields with
a very small initial step size increasing gradually during the
course of propagation to the desired . In other words, if
the desired 0.1, then an initial 0.001 could
be used increasing uniformly to 0.1, which involves 100 pre-
propagation steps. Of course, the smaller initial is better.
Fig. 1(b) is the power spectrum of the same as the top figure
with the second technique of removing the error applied, using
an initial 0.0001 m. The computation of the correlation
function for the spectral technique starts when becomes
0.1 m. The comparison between the two figures shows that
the error has reduced drastically. To show the advantage of
the MEFD, we compare the accuracy and the efficiency of
the MEFD with the most popular FD-BPM’s: the CN, RS
and EFD. Fig. 2 shows the percentage error of the effective
refractive index as a function of for different transverse
mesh spacing using the four methods. From the figure, we can
observe that the error generally decreases asis decreased
for the four algorithms. The figure also shows that the accuracy
of the CN, the MEFD and the EFD are not very sensitive to
the change in , but for the EFD must be less than
the limit of the stability condition. We note from this stability
condition of the EFD that as is decreased, must be also
decreased. On the other hand, Fig. 2 shows the convergence
of the RS as a function of and shows, as for the EFD, that

must decrease as is reduced. Fig. 3 shows the CPU
time per propagational step as a function of the total transverse
mesh points. From the figure, the speed of the MEFD is almost
the same the EFD, however when half of the number of mesh
points is considered (using the leapfrog ordering [1], [8]) the
speed as expected increases two fold. Comparison between the
MEFD2 and the CN shows that the MEFD2 is always more
than eight times faster per propagational step than the CN.

All the simulations in this work were executed using a Sparc
Classic Sun workstation.

In conclusion, we have analyzed the DuFort–Frankel BPM
(or the MEFD), which is a modification to the existing EFD,
and found that in using this method care must be exercised
due to the existence of spurious fields that must be cleared
before using the method. The analysis of the MEFD has been
shown and the accuracy is compared with other FD-BPM’s.
From the comparisons, we conclude that the MEFD is very
efficient; its accuracy is comparable to the best FD-BPM’s
and its speed is higher. Since the MEFD is still explicit, the
3-D version will be highly parallel and useful for analyzing
long and complicated devices. The work of parallelizing the
3-D MEFD is under investigation.
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