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A Time-Domain Algorithm for the Analysis
of Second-Harmonic Generation in
Nonlinear Optical Structures

Mohammad A. Alsunaidi, Husain M. Masoudi, and John M. Arnold

Abstract—A time-domain simulator of integrated optical In this letter, we present a new time-domain formulation
structures containing second-order nonlinearities is presented. of the SHG in nonlinear optical aweguides with a suitable
The simulation algorithm is based on nonlinear wave equations FDTD solution. The equations representing the propagating
representing the propagating fields and is solved using the fi- fie|ds are derived using a nonlinear wave equation such that the
nite-difference time-domain method. The simulation results for - 5rohiem js reduced to an equivalent scalar problem. In planar
a continuous-wave operation are compared with beam propa- . equides, a TE-polarized fundamental mode can couple to a

gation method simulations showing excellent agreement for the TM-polarized d-h - de th h iat
particular examples considered. Because the proposed algorithm ' 'V'-POlarized second-harmonic mode through an appropriate

does not suffer from the inaccuracies associated with the paraxial {€nsor coefficient of the nonlinear susceptibility. Although
approximation, it should find application in a wide range of limited to such cases, this class of problems covers a significant

device structures and in the analysis of short-pulse propagation in number of practical applications such as GaAs-based planar

second-order nonlinear devices. waveguides. In this case, both fields can be represented by
Index Terms—Finite-difference time-domain (FDTD) method, equivalent wave equations. This new formulation of the SHG
modeling, nonlinear wave propagation, second-harmonic genera- problgm offers great ad\(antages over both th,e (?Ia55|cal BPM
tion. technique and the vectorial FDTD method. While it completely
accounts for the wave-medium interactions (e.g., nonlinear

I. INTRODUCTION coupling, reflections, scattering, transients, etc.), it avoids the

ITH THE ADVENT of fast and powerful computers, limitations associated with conventional asymptotic behavior

detailed numerical simulation of accurate models re and paraxial propagation. On the other hand, it provides an
. ; L . ; fficient method for the time-domain characterization of non-
resenting the physical phenomena inside nonlinear optical

fiear optical structures by focusing on such quantities as beam

vir%esahgzobne(r::g:ﬁo%ﬁigg& aﬂgsrek!?ge.sggéeixsaflmlpIeljstgg i?]erg-[bnsity, nonlinear depletion and phase shift, characteristic
propag (BPM) . Ay ﬁgths, etc., in which detailed analysis of the field components
analysis of second-harmonic generation (SHG) in a numberig

nonlinear optical structures [1]. This method is relatively fle not necessary. For a wo-dimensional (2-D) SHG problem,
: P X Ll Y r example, the proposed time-domain algorithm solves for
ible and computationally efficient. However, the formulation o

; ; . . ~only two fields; the fundamental field and the second-har-
the fields provides only the steady-state behavior. It is also I"Hionic field. For the same problem, the conventional FDTD

|t|ed to mpdelllng'de'vlcleg' Whtgre tr‘l]'i prm;ar)t/ flow of ler}.ergglt Iglgorithm solves for three field components. In addition, it also
along a single principal direction. These facts severely imi I'fﬁtermediately evaluates the electric flux density components.
ap_?ﬂcib”.'ty gff;he meth_od. d : hod h | The computational saving in this case is more than 50%. This
€ finite-difference time-domain (FDTD) method has alsg, . oy e the proposed formulation more attractive than the
been successfully applied in a variety of problems 'nVOIVmﬁJII-wave solution, especially when three-dimensional charac-
electromagnetic radiation and propagation in linear as well ization of opticél devices with typical dimensions is sought.

nonlinear structures (for example [2]{3]). This method.prq- this way the proposed algorithm overcomes the limitations
vides comprehensive solutions of time-domain models Wlthogl} computational intensity

the simplifying assumptions that limit the application of the The new algorithm is capable of incorporating dif-

BPM. The main, and serious, drawback of the FDTD methof%rent techniques in the SHG process including quasi-phase

however, is the intense consumption of computational power |91ratching (QPM), and it can simulate continuous-wave (CW)
typical time-domain simulations. A compromise between ¢ cond-order nonlinear effects as well as operations with

fgggﬂ?éeog ﬁg;atgiid:gt;%ﬁigﬂsggs and the available compy ﬁ{e-varying envelops. The amount of published work in
: this particular area is very limited, and to the best of our
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Il. FORMULATIONS
The formulation of the fundamental and second-harmoni  °°
fields starts with the scalar wave equation [] 06
O’E 8*p 04
2 _ 2
V°E = HoEoM at—z + NOEOW (1)

o
N

wherekF is the electric field intensity?’ is the polarization given
by P = x(¥ E;E;, n is the material refractive index, and®
is the dispersionless nonlinear susceptibility. Consider three di= °*
ferent fields propagating at three different frequendiego ), 04
E5(w»), and Es(ws) in @ material exhibiting an instantaneous
second-order nonlinearity

ormalized fields
=]

-06

08

9’ E, 0*(EE3) ! : : : : :

2B = poeon? =L 4 e ytP L2 : : : : } :

v ! H ¢ nl atz +/l ‘ X(W1) atz (2) -10 é 1‘0 1‘5 2‘0 25 3‘0 35
Time (fs)

(2) H? (E1E3)

2
V2E2 = Hogong % + /’LOEOX(wz) (3) Fig. 1. Time-domain evolution of the fundamental and second-harmonic fields

and ot? at an arbitrary point within the guiding layer of the asymmetric waveguide. The
waveguide consists of a2m-thick substrate{ = 3.1) and cladding£ = 1.0)
layers and a 0.44:m-thick guiding layer{; = 3.605 55).
VZE B 2 82E3 N (2 82(E1E2) (4) y 4 g g layert; )
3 = HooNg —8t2 /’LOEOX(WS) 78152 .
) ) approach, however, will increase the computational intensity of
Equation (2) can be rewritten as the algorithm. Alternatively, the two fields can be staggered in
O2F time such that the fundamental field leads the second harmonic
V2E| = pogon? 8721 + “OEOXEZ)l) by one time step and effectively decoupling the two fields in

0% Fs 9% F, 0L, OFs time. The \_/alueEf("“) is, thus, comput_ed using the_values of
. <E2 5+ B3y —o + 25— —> . (5) £E* attimeinstances, n— 1, andn — 2. This technique is found
ot ot ot ot to be more efficient, and the accuracy of the solution is enhanced
Similar manipulations can be done to (3) and (4). With = if the time-step size is keptsmgll. It should be point_ed out, how-
Wy = w,ws = wy +wy = 2w, ¥ = xP(w1)/2 = xD(ws), ©€VeL tha_lt Whe_n the algorithm is use_d to _evaluat_e f|e_ld envelops
andE/ = B, = E, andE® = Ej, the following equations N CW simulations, the terms involving time derivativesiof
representing respectively the fundamental and the second-#a(6) can be neglected because they eventually equal to zero at

monic fields can be obtained: steady state. o _
- As a first example for the validation of the FDTD algorithm,
0°F

vipl — ﬂOEOH? o L ey a phase_-matched_case is considgred. The structure us_ed for_the
ot? FDTD simulation is an asymmetric GaAs-based slab dielectric
. <Ef I*E* L O*ET 49 OE! OE* > (6) waveguide. The excitation field is a CW signal at a fundamental
ot? ot? ot ot wavelength ofA; = 1.55 ym and an amplitude of 1.8 10°
V/m. The transverse profile of the excitation corresponds to the

and - first guided mode at the given operating frequency with effec-
V2E* = poe,n? o r" + 2pt0eo P tive indexn.gx = 3.4078. To facilitate the propagation of the

23752 first guided mode of the second-harmonic field at the same ef-
. <Ef o*Ef N OEf aEf > . (7 fective refractive index withh; = 0.775 um (phase-matched
ot? ot ot condition), the value; = 3.4778 is chosen inside the guiding

layer. The nonvanishing element of the nonlinear susceptibility
tensor of the bulk GaAs is taken aézy)z = 200 pm/V. This
value is off the second-harmonic resonance with the band edge

The discritization schemes and the time-stepping algorithwhere absorption of the second-harmonic energy is negligible.
for the two fields have to be arranged carefully. For this reasofhe excitation signal is smoothly entered in the computation do-
the semi-implicit FD scheme [3] is used to improve the overathain to avoid numerical reflections. A long simulation time cor-
accuracy and stability of the solution. In fact, using this schemmsponding to tens of cycles was allowed to ensure steady-state
the stability condition of the linear wave equation solution camesults. The mesh parameters were carefully chosen to effec-
be used even with strong nonlinearity. However, due to the cdively reduce numerical dispersion especially in the propagation
pling terms in the fundamental and second-harmonic field equdirection ¢ axis). Several experiments showed that a resolu-
tions, the evaluation of the two fields at the same time step is rimn of Az = A, /100 ensured convergence. The computation
possible because knowledge of the updated valug‘ois re- domain is terminated by second-order absorbing boundaries to
quired. To solve this problem, one can introduce a few iteratioaahance the accuracy of the solution and to allow for long sim-
at each time step to find convergent values of the two fields. Thiation times.

I1l. FDTD SOLUTIONS AND NUMERICAL RESULTS
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Fig.2. Normalized intensities for the fundamental and second-harmonic fiefdg- 3-  Normalized intensitigs for the fundamental and second-harmonic fields
along the waveguide. The FDTD results (solid) are compared with the BPYPN the waveguide for both: (top) non-QPM case and (bottom) QPM case.
results (dashed).

fundamental and second-harmonic intensities are calculated as
anahown in Fig. 3. In this figure, the results for a non-QPM (no
rrugations) case are also shown [Fig. 3(a)]. The oscillating
ves demonstrate the case wieh# 0. The intensity of the
cond harmonic increases over the first half-period and then de-
pases to zero over the rest of the period while the intensity is
F?Fpsferred back to the fundamental signal. The period of oscil-

smooth portion of the input signal used to feed the excitati anon n tr:'e figure c_omloa_res very Wegl W'tlh thle aEaIync?]I value
into the computation window. The signals reach steady stfﬂeLC' The QPM simulation [Fig. 3(b)] clearly s ows the im-
after a number of cycles. The energy from the incident be ovement in the energy exchange between the two fields along
(fundamental) couples to the second harmonic on the fi device compared 10 the non-QPM case.
guided mode. Fig. 2 shows the FDTD steady-state normal-
ized intensities corresponding to the fundamental and the
second-harmonic signals (solid lines) along theveguide. For ~ The application of the FDTD algorithm for modeling SHG
comparison, 2-D BPM results (dashed lines) were also genernonlinear optical devices has been demonstrated. Compared
ated. The agreement between the two curves is excellent. It kmthe BPM, the result of the CW operation using the proposed
to be noted that for this particular device structure, the effects®DTD algorithm is in close agreement. It does not, however,
paraxial approximation and internal reflections are insignificastffer from the inaccuracies associated with the paraxial approx-
and hence the accuracy of the two methods is matching.  imation. As a consequence, the proposed algorithm finds ap-
Further validation of the nonlinear FDTD algorithm involveglication in a wider range of device geometries and structures.
the quasi-phase-matched (QPM) case. The QPM technique [Nso, being a time-domain technique, the presented algorithm
a practical method of substantially increasing the second-hhgas a great potential in the analysis of ultra-short-pulse propa-
monic power by effectively reducing the phase mismatch bgation in nonlinear devices, which is the subject of current in-
tween the fundamental and the second-harmonic fields. This/estigations.
achieved by modulating the nonlinear term in alternate half-pe- ACKNOWLEDGMENT
riods in a corrugated structure. The amount of phase mismatch ) )
between the two fields is given bk = 2k, (n’; — nje‘ﬂ)_ The Th_e authors Wo_uld I|_ke to acknowledge the s_upport provided
amount of coupling between the fields can be controlled by a@y King Fahd University of Petroleum and Minerals and the
justing the grating period and hence the amount of phase rii#iversity of Glasgow.
match. Also, the grating period can be carefully chosen to ensure
energy coupling to the first guided mode. Maximum power ex-
change is achieved by setting the corrugation period to be equdll :: g/letii?:(;??/iv :\?g jid/é;nzlg,n“M;Jde;irf;?lesl»eCr%fggszfigefgg:rlri]ne?g eaffeacttif)n
to the coherence length, which is defined/as = 27 /Ak. In meﬂ?od,"IEEE J.gQuantum EglectEJnvoI. 32, op. 21097-2113,|[19s§)5.g
thls_exqmple, the Sammeg_u'de StrUCt_ure IS l_Jsed where the ef- [2] W.Huang, S.Chu, A. Goss, and S. Chaudhuri, “A scalar finite-difference
fective indexes corresponding to the first guided mode for both™ ~ time-domain approach to guided-wave optid€EE Photon. Technol.
the fundamental and the second-harmonic fields are 3.4078 and  Lett, vol. 3, pp. 524-526, 1991.
3.5347, respectively. A corrugated structure of period .85 [3] A. Taflove, Computational Electrodynamics: The Finite-Difference

ki : Time-Domain Methad Norwood, MA: Artech House, 1995.
which is close to the coherence length, is used where the NONZ M1 M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasiphase-

linear susceptibility is periodically turned on for half a period matched second-harmonic generation: Tuning and toleranése J.
and then off toy(?) = 0 for the other half of the period. The Quantum Electronyol. 28, pp. 26312654, Nov. 1992.

The time-domain evolution of the fundamental
second-harmonic signals at an arbitrary point inside the guidiﬁ
layer is shown in Fig. 1. It can be seen that the second-harmofi
signal develops a frequency that is double the input frequen%
of the fundamental signal. It should be mentioned here t
the transients that appear in the waveforms correspond to}

IV. CONCLUSION
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