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A Time-Domain Algorithm for the Analysis
of Second-Harmonic Generation in

Nonlinear Optical Structures
Mohammad A. Alsunaidi, Husain M. Masoudi, and John M. Arnold

Abstract—A time-domain simulator of integrated optical
structures containing second-order nonlinearities is presented.
The simulation algorithm is based on nonlinear wave equations
representing the propagating fields and is solved using the fi-
nite-difference time-domain method. The simulation results for
a continuous-wave operation are compared with beam propa-
gation method simulations showing excellent agreement for the
particular examples considered. Because the proposed algorithm
does not suffer from the inaccuracies associated with the paraxial
approximation, it should find application in a wide range of
device structures and in the analysis of short-pulse propagation in
second-order nonlinear devices.

Index Terms—Finite-difference time-domain (FDTD) method,
modeling, nonlinear wave propagation, second-harmonic genera-
tion.

I. INTRODUCTION

W ITH THE ADVENT of fast and powerful computers,
detailed numerical simulation of accurate models rep-

resenting the physical phenomena inside nonlinear optical de-
vices has become efficient and reliable. For example, the beam
propagation method (BPM) has been successfully used in the
analysis of second-harmonic generation (SHG) in a number of
nonlinear optical structures [1]. This method is relatively flex-
ible and computationally efficient. However, the formulation of
the fields provides only the steady-state behavior. It is also lim-
ited to modeling devices where the primary flow of energy is
along a single principal direction. These facts severely limit the
applicability of the method.

The finite-difference time-domain (FDTD) method has also
been successfully applied in a variety of problems involving
electromagnetic radiation and propagation in linear as well as
nonlinear structures (for example [2]–[3]). This method pro-
vides comprehensive solutions of time-domain models without
the simplifying assumptions that limit the application of the
BPM. The main, and serious, drawback of the FDTD method,
however, is the intense consumption of computational power for
typical time-domain simulations. A compromise between the
amount of data needed for analysis and the available computer
resources has to be established.
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In this letter, we present a new time-domain formulation
of the SHG in nonlinear optical waveguides with a suitable
FDTD solution. The equations representing the propagating
fields are derived using a nonlinear wave equation such that the
problem is reduced to an equivalent scalar problem. In planar
waveguides, a TE-polarized fundamental mode can couple to a
TM-polarized second-harmonic mode through an appropriate
tensor coefficient of the nonlinear susceptibility. Although
limited to such cases, this class of problems covers a significant
number of practical applications such as GaAs-based planar
waveguides. In this case, both fields can be represented by
equivalent wave equations. This new formulation of the SHG
problem offers great advantages over both the classical BPM
technique and the vectorial FDTD method. While it completely
accounts for the wave-medium interactions (e.g., nonlinear
coupling, reflections, scattering, transients, etc.), it avoids the
limitations associated with conventional asymptotic behavior
and paraxial propagation. On the other hand, it provides an
efficient method for the time-domain characterization of non-
linear optical structures by focusing on such quantities as beam
intensity, nonlinear depletion and phase shift, characteristic
lengths, etc., in which detailed analysis of the field components
is not necessary. For a two-dimensional (2-D) SHG problem,
for example, the proposed time-domain algorithm solves for
only two fields; the fundamental field and the second-har-
monic field. For the same problem, the conventional FDTD
algorithm solves for three field components. In addition, it also
intermediately evaluates the electric flux density components.
The computational saving in this case is more than 50%. This
fact makes the proposed formulation more attractive than the
full-wave solution, especially when three-dimensional charac-
terization of optical devices with typical dimensions is sought.
In this way the proposed algorithm overcomes the limitations
of computational intensity.

The new algorithm is capable of incorporating dif-
ferent techniques in the SHG process including quasi-phase
matching (QPM), and it can simulate continuous-wave (CW)
second-order nonlinear effects as well as operations with
time-varying envelops. The amount of published work in
this particular area is very limited, and to the best of our
knowledge, no previous attempt for the analysis and validation
of a FDTD-based solution was reported. For this reason,
the simulation results of the new FDTD formulation will
be compared with the CW BPM results for cases where the
paraxial approximation is valid. Two examples involving
second-harmonic generation in GaAs-based planar waveguides
are presented in detail.
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II. FORMULATIONS

The formulation of the fundamental and second-harmonic
fields starts with the scalar wave equation []
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whereE is the electric field intensity,P is the polarization given
by Pk = �(2)EiEj , n is the material refractive index, and�(2)

is the dispersionless nonlinear susceptibility. Consider three dif-
ferent fields propagating at three different frequenciesE1(!1),
E2(!2), andE3(!3) in a material exhibiting an instantaneous
second-order nonlinearity

r
2E1 = �o"on

2
1

@2E1

@t2
+ �o"o�

(2)
(!1)

@2(E2E3)

@t2
(2)

r
2E2 = �o"on

2
2

@2E2

@t2
+ �o"o�

(2)
(!2)

@2(E1E3)

@t2
(3)

and

r
2E3 = �o"on

2
3

@2E3

@t2
+ �o"o�

(2)
(!3)

@2(E1E2)

@t2
: (4)

Equation (2) can be rewritten as
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Similar manipulations can be done to (3) and (4). With!1 =
!2 = !, !3 = !1 + !2 = 2!, �(2) = �(2)(!1)=2 = �(2)(!3),
andEf = E1 = E2 andEs = E3, the following equations
representing respectively the fundamental and the second-har-
monic fields can be obtained:
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III. FDTD SOLUTIONS AND NUMERICAL RESULTS

The discritization schemes and the time-stepping algorithm
for the two fields have to be arranged carefully. For this reason,
the semi-implicit FD scheme [3] is used to improve the overall
accuracy and stability of the solution. In fact, using this scheme,
the stability condition of the linear wave equation solution can
be used even with strong nonlinearity. However, due to the cou-
pling terms in the fundamental and second-harmonic field equa-
tions, the evaluation of the two fields at the same time step is not
possible because knowledge of the updated value ofEs is re-
quired. To solve this problem, one can introduce a few iterations
at each time step to find convergent values of the two fields. This

Fig. 1. Time-domain evolution of the fundamental and second-harmonic fields
at an arbitrary point within the guiding layer of the asymmetric waveguide. The
waveguide consists of a 2-�m-thick substrate (n = 3:1) and cladding (n = 1:0)
layers and a 0.44-�m-thick guiding layer (nf = 3:60555).

approach, however, will increase the computational intensity of
the algorithm. Alternatively, the two fields can be staggered in
time such that the fundamental field leads the second harmonic
by one time step and effectively decoupling the two fields in
time. The valueEf(n+1) is, thus, computed using the values of
Es at time instancesn,n�1, andn�2. This technique is found
to be more efficient, and the accuracy of the solution is enhanced
if the time-step size is kept small. It should be pointed out, how-
ever, that when the algorithm is used to evaluate field envelops
in CW simulations, the terms involving time derivatives ofEs

in (6) can be neglected because they eventually equal to zero at
steady state.

As a first example for the validation of the FDTD algorithm,
a phase-matched case is considered. The structure used for the
FDTD simulation is an asymmetric GaAs-based slab dielectric
waveguide. The excitation field is a CW signal at a fundamental
wavelength of�f = 1:55 �m and an amplitude of 1.0� 109

V/m. The transverse profile of the excitation corresponds to the
first guided mode at the given operating frequency with effec-
tive indexne� = 3:4078. To facilitate the propagation of the
first guided mode of the second-harmonic field at the same ef-
fective refractive index with�s = 0:775 �m (phase-matched
condition), the valuens = 3:4778 is chosen inside the guiding
layer. The nonvanishing element of the nonlinear susceptibility
tensor of the bulk GaAs is taken as�(2)xyz = 200 pm/V. This
value is off the second-harmonic resonance with the band edge
where absorption of the second-harmonic energy is negligible.
The excitation signal is smoothly entered in the computation do-
main to avoid numerical reflections. A long simulation time cor-
responding to tens of cycles was allowed to ensure steady-state
results. The mesh parameters were carefully chosen to effec-
tively reduce numerical dispersion especially in the propagation
direction (z axis). Several experiments showed that a resolu-
tion of �z = �s=100 ensured convergence. The computation
domain is terminated by second-order absorbing boundaries to
enhance the accuracy of the solution and to allow for long sim-
ulation times.
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Fig. 2. Normalized intensities for the fundamental and second-harmonic fields
along the waveguide. The FDTD results (solid) are compared with the BPM
results (dashed).

The time-domain evolution of the fundamental and
second-harmonic signals at an arbitrary point inside the guiding
layer is shown in Fig. 1. It can be seen that the second-harmonic
signal develops a frequency that is double the input frequency
of the fundamental signal. It should be mentioned here that
the transients that appear in the waveforms correspond to the
smooth portion of the input signal used to feed the excitation
into the computation window. The signals reach steady state
after a number of cycles. The energy from the incident beam
(fundamental) couples to the second harmonic on the first
guided mode. Fig. 2 shows the FDTD steady-state normal-
ized intensities corresponding to the fundamental and the
second-harmonic signals (solid lines) along the waveguide. For
comparison, 2-D BPM results (dashed lines) were also gener-
ated. The agreement between the two curves is excellent. It has
to be noted that for this particular device structure, the effects of
paraxial approximation and internal reflections are insignificant
and hence the accuracy of the two methods is matching.

Further validation of the nonlinear FDTD algorithm involves
the quasi-phase-matched (QPM) case. The QPM technique [] is
a practical method of substantially increasing the second-har-
monic power by effectively reducing the phase mismatch be-
tween the fundamental and the second-harmonic fields. This is
achieved by modulating the nonlinear term in alternate half-pe-
riods in a corrugated structure. The amount of phase mismatch
between the two fields is given by�k = 2ko(n

s
e� � nfe�). The

amount of coupling between the fields can be controlled by ad-
justing the grating period and hence the amount of phase mis-
match. Also, the grating period can be carefully chosen to ensure
energy coupling to the first guided mode. Maximum power ex-
change is achieved by setting the corrugation period to be equal
to the coherence length, which is defined asLC = 2�=�k. In
this example, the same waveguide structure is used where the ef-
fective indexes corresponding to the first guided mode for both
the fundamental and the second-harmonic fields are 3.4078 and
3.5347, respectively. A corrugated structure of period 5.85�m,
which is close to the coherence length, is used where the non-
linear susceptibility is periodically turned on for half a period
and then off to�(2) = 0 for the other half of the period. The

Fig. 3. Normalized intensities for the fundamental and second-harmonic fields
along the waveguide for both: (top) non-QPM case and (bottom) QPM case.

fundamental and second-harmonic intensities are calculated as
shown in Fig. 3. In this figure, the results for a non-QPM (no
corrugations) case are also shown [Fig. 3(a)]. The oscillating
curves demonstrate the case when�k 6= 0. The intensity of the
second harmonic increases over the first half-period and then de-
creases to zero over the rest of the period while the intensity is
transferred back to the fundamental signal. The period of oscil-
lation in the figure compares very well with the analytical value
of LC . The QPM simulation [Fig. 3(b)] clearly shows the im-
provement in the energy exchange between the two fields along
the device compared to the non-QPM case.

IV. CONCLUSION

The application of the FDTD algorithm for modeling SHG
in nonlinear optical devices has been demonstrated. Compared
to the BPM, the result of the CW operation using the proposed
FDTD algorithm is in close agreement. It does not, however,
suffer from the inaccuracies associated with the paraxial approx-
imation. As a consequence, the proposed algorithm finds ap-
plication in a wider range of device geometries and structures.
Also, being a time-domain technique, the presented algorithm
has a great potential in the analysis of ultra-short-pulse propa-
gation in nonlinear devices, which is the subject of current in-
vestigations.
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