
Figure 5 Measurement of IIP3 of the CMOS micromixer

RF�IF isolation is better than 24 dB for RF power below a
gain-compressed point. Finally, a two-tone intermodulation
measurement is performed, and the results are shown in
Figure 5. IIP � 0 dBm is obtained from the figure.3

4. CONCLUSION

Gilbert cell variant topology is demonstrated in a double-bal-
anced mixer. With a single-ended IF output measurement, a
conversion loss of 4.7 dB is achieved. It is found that the
linearity of this mixer is very good: the P is �10 dBm and1 dB
IIP is 0 dBm.3
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ABSTRACT: The linear time-domain beam propagation method
( )TD�BPM has been extended to model the propagation of pulsed
optical beams in second-order nonlinear optical material of integrated
wa�eguides. The coupled nonlinear wa�e equations ha�e been deri�ed
and discretized using the explicit finite-difference method. The nonlinear
TD�BPM method de�eloped in the present work is �ery efficient, and is
simple to implement. � 2001 John Wiley & Sons, Inc. Microwave Opt
Technol Lett 28: 253�257, 2001.
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1. INTRODUCTION

In the past three decades, the second-order nonlinear optical
phenomenon of � Ž2. played a very important role in many
optical applications. It was used predominantly in frequency
conversion such as second-harmonic generation, parametric
amplification, sum-frequency generation, and difference-

� �frequency generation 1�4 . Most of the research focused on
efficient techniques to convert to other harmonics, and re-
cently on other effects like nonlinear phase shift to the

� �fundamental beam 5 . At low conversion, and off phase
matching between the fundamental and the second harmonic,
the nonlinear phase shift behaves similar to the Kerr effect of

Ž3. � �� 5 . Lately, this nonlinear phase shift process has re-
ceived much attention experimentally and theoretically to

� �achieve all-optical switching in integrated optics 6 . In order
to fully understand the complicated behavior taking place in
second-order nonlinear interaction, accurate and efficient
techniques must be available to model such devices. On the
other hand, modeling nonlinear integrated optical wave-
guides is difficult using analytical techniques like the
coupled-mode theory, and can be more difficult if the inte-
grated optical circuits contain multiple waveguides that have
geometrical and�or material changes in all three spatial
directions. Other numerical techniques like the beam-propa-

Ž .gation method BPM and the finite-difference time-domain
Ž .FDTD method are more suited for such problems. Both of
these techniques were used to model, in the CW domain,
optical waveguides that contain second-order nonlinear ef-

� � � �fects 7�10 . In principle, the FDTD in 9�10 should be able
to model pulsed optical beams in � Ž2. material; however, the
approximation involved showed that it is limited in its present
form. The CW version reported showed limitations on the
input power and the overall stability of the algorithm. In
addition, the FDTD requires enormous computer resources,

� �even for analyzing simple 2-D optical waveguides 11�12 .
Ž .Recently, the beam-propagation method BPM was ex-

tended, using the explicit finite-difference technique, to the
� �time domain to model pulsed optical beams 11�12 . The

accuracy of the TD�BPM was tested rigorously in three
different problems of homogeneous medium, metallic and
dielectric waveguides. In addition to its validity in homoge-
neous and metallic problems, it was also concluded that the
technique is well suited to study pulsed optical beams in
dielectric waveguides over long distances with high efficiency.

� �In this work, we extend the TD�BPM 11�12 to model
pulsed optical beams in the presence of second-order nonlin-
ear effects. The parabolic coupled nonlinear wave equations
for the fundamental and the second-harmonic fields were
derived in the time domain. All features of time and three-
dimensional spatial variations were retained, and the funda-
mental pulse is allowed to deplete. Previous attempts to
model pulsed optical beams in � Ž2. material involved a 1-D
Ž .plane-wave approximation, with many time derivative terms

� �removed to simplify the analysis 1�4, 13�14 . In this work,
Ž .the explicit finite-difference EFD technique was used to

discretize the coupled system of nonlinear equations. The
EFD method is well known for its simplicity, efficiency, and is
also suited for parallel computer implementations that can

� �model large 3-D optical devices 15 . For simplicity, we refer
to the new nonlinear time-domain BPM method as
TD�BPM�SHG. Finally, the method is applied to model
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waveguides containing second-order nonlinear effects under
different conditions, and the results are analyzed.

2. NUMERICAL METHOD

We start with the wave equation for the propagation of an
electric field E of a given polarization in a material with a
refractive index n and a homogeneous second-order nonlin-
ear susceptibility � Ž2.:

� 2E � 2P
2 2 Ž .� E � � 	 n � � 	 10 0 0 02 2� t � t

where the nonlinear polarization P � � Ž2.EE and �2 is the
Ž .three-dimensional x, y, z Laplacian. Here, it is assumed

that the fields are linearly polarized, and the vector nature of
the fields can be ignored. This is a good first approximation
for the paraxial problems of the type considered here for

� �which the BPM is appropriate 8 . Consider the propagation
of three pulsed optical fields of different central frequencies
� , � , and � , while extracting the fast oscillating carriers1 2 3
and reference phases in the direction of propagation z. The
fields can be expressed as

1
� � jŽ� t�k n z .1 1 1 1 1Ž . � Ž . � Ž .E x , y , z , t � � x , y , z , t e � c.c. 2a

2
1

� � jŽ� t�k n z .2 2 2 2 2Ž . � Ž . � Ž .E x , y , z , t � � x , y , z , t e � c.c. 2b
2
1

� � jŽ� t�k n z .3 3 3 3 3Ž . � Ž . � Ž .E x , y , z , t � � x , y , z , t e � c.c. 2c
2

where n , n , and n are reference refractive indexes, and k ,1 2 3 1
k , and k are the free-space wavenumbers at the three2 3
frequencies � , � and � , respectively. � � � � � , and1 2 3 3 1 2
c.c. is the complex conjugate of the expression preceding it.
The above describes the general behavior of sum-frequency,
difference-frequency generation, and parametric amplifica-
tion. For simplicity, we restrict the analysis in this work to
second-harmonic generation, and assume � � � � �1 2
Ž . Ž .fundamental and � � � � � � 2� second harmonic ;3 1 2
then k � k � k �2 � k � 2��� , and � is the funda-1 2 3 0 f f
mental field wavelength. General frequency conversion tech-

Ž . Ž .niques can be derived similarly. Thus, Eqs. 2a and 2b
become identical, and therefore we are left with the analysis

Ž . Ž .of two nonlinear equations. Upon inserting 2 in 1 and
setting the coefficients of e j� t and e j2� t equal to zero, we
may write the two equations under the parabolic approxima-
tion, after neglecting only terms containing the second
derivative with respect to z, as

�� f

2 jk n0 0 f � z
2 2 f fn � � ��f2 f 2 2 2 f� � � � k n � n � � � 2 j�Ž .� 0 f 0 f 2 2 � tc � t

� Ž2. �� f * �� s �� s �� f *
f * s� 2 � 2 j�� � 2 j��2 ½ � t � t � t � tc

� 2� s � 2� f *
f * s 2 f * s � j
 k z Ž .�� � � � � � � e 3a2 2 5� t � t

�� s

4 jk n0 0 s � z
2 2 s sn � � ��s2 s 2 2 2 sŽ .� � � � 4k n � n � � � 4 j�� 0 s 0 s 2 2 � tc � t

� Ž2. �� f �� f �� f
f� � 4 j��2 ½ � t � t � tc

� 2� f
f 2 f f j
 k z Ž .�� � 2� � � e 3b2 5� t

2 Ž 2 2. Ž 2 2.where � � � �� x � � �� y is the transverse Lapla-�
Ž . Ž .cian and 
k � 2k n � n . The � x, y, z, t are the0 0 s 0 f

parabolic fields which are paraxial approximations to the
Ž . Ž . � 3Ž .� x, y, z, t the Helmholtz fields . � x, y, z, t �
sŽ . �1Ž . � 2Ž . fŽ .� x, y, z, t , � x, y, z, t � � x, y, z, t � � x, y, z, t ,

c is the speed of light in free space, and � Ž2. �
Ž2.Ž . Ž2.Ž . � �� 2�; �, � � � �; 2�, �� �2 5, 6 . In this analysis,

the source field � f is allowed to deplete during propagation.
n � n � n and n � n are reference refractive indexes0 f 1 2 0 s 3
that can be chosen as the effective refractive indexes of the

� �guided modes 8, 11 . n and n are the refractive indexes atf s
the fundamental and the second harmonic, and ‘‘*’’ means
the complex conjugate of the field. For convenience, through-
out the rest of this work, subscripts or superscripts for both f
and s are related to the fundamental wave and the second-
harmonic wave respectively. In addition to the full time

Ž .variation, Eq. 3 describes fully the three-dimensional inter-
action of the two optical pulses at the two different frequen-

Ž .cies. Equation 3a describes the propagation of the funda-
Ž .mental pulsed beam, and Eq. 3b describes the propagation

of the second-harmonic pulsed beam. It can be seen that the
two equations are coupled, nonlinear, and nontrivial to solve.

� �One may notice that the linear TD�BPM 11, 12 equation
Ž . Ž2.can be extracted from Eq. 3 if � is set to zero, and if the

Ž .field is time independent, then Eq. 3 solves the classical CW
� �BPM�SHG 7, 8 .

The substitution of a moving time coordinate � � t � z�� g
with arbitrary � while using the central finite-differenceg

� �approximations 7, 8, 16

Ž .�� x , y , z , �

� z
1

Ž Ž . Ž .. Ž .� � x , y , z � 
 z , � � � x , y , z � 
 z , � 4a
2
 z

Ž .�� x , y , z , t

��

1
Ž Ž . Ž .. Ž .� � x , y , z , � � 
� � � x , y , z , � � 
� 4b

2
�
2 Ž .� � x , y , z , � 1

Ž Ž .� � x , y , z , � � 
�2 2�� 
�

Ž . Ž ..�� x , y , z , � � 
� � 2� x , y , z , �

Ž .4c
2 Ž .� � x , y , z , ��

1
Ž Ž . Ž ..� � x � 
 x , y , z , � � � x � 
 x , y , z , �2
 x
1

Ž Ž . Ž ..� � x , y � 
 y , z , � � � x , y � 
 y , z , �2
 y
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1 1
Ž . Ž .� 2 � � x , y , z , � 4d2 2ž /
 x 
 y

Ž .to replace the partial derivatives in Eq. 3 leads to the
second-order accurate explicit finite-difference time-domain

Ž .BPM for second-harmonic generation TD�BPM�SHG :

f Ž . f Ž . f f Ž .� z � 
 z � � z � 
 z � M � zi , p , m i , p , m i , p , m i , p , m

f f * Ž . s Ž . �j
 k z Ž .� L � z � z e 5a� i , p , m i , p , m

s Ž . s Ž . s s Ž .� z � 
 z � � z � 
 z � M � zi , p , m i , p , m i , p , m i , p , m

s f Ž . z Ž . j
 k z Ž .� L � z � z e . 5b� i , p , m i , p , m

i, p, and m represent the discretization of x, y, and � ,
respectively. M f and M s are very sparse complexi, p, m i, p, m
matrices containing the linear coefficients of the fundamental
and SH fields, respectively. L f and Ls are also very sparse� �

complex matrices containing the nonlinear coefficients of the
fundamental and SH fields, respectively. The discretized

Ž .equations 5 are very similar to the classical CW equations
� �7, 8 , but with an additional transverse variable � . The
explicit propagation of the optical field using the
TD�BPM�SHG is quite simple where it involves a multipli-
cation of the input fields with very sparse matrices, which
makes the method very efficient and very well suited for

� �parallel-computer implementations 7, 8, 15 . Two numerical
Ž .windows are used to advance the fields in Eq. 5 : one for the

fundamental pulse, and the other for the second-harmonic
pulse. It has been noticed that the TD�BPM�SHG algorithm

Ž .in 5 is stable for a propagational step 
 z very close to the
� �value of the linear TD�BPM counterpart 11, 12 . Examina-

tion of the differences between the two algorithms shows that
Ž .the nonlinear term in 5 has very little effect on the stability

of the method because practical values of � Ž2. are on the
order of 10�12 m�V.

3. RESULTS AND DISCUSSIONS

In this section, the TD�BPM�SHG algorithm is imple-
mented and used to simulate the propagation of a temporal
pulse inside optical dielectric waveguides in the presence of a
second-order nonlinear effect. The method was examined
using different initial conditions, and the results are analyzed.
The symmetric dielectric slab waveguide in Figure 1 has been
used for the analysis with a fundamental carrier optical

Figure 1 Two-dimensional slab dielectric waveguide used in the
analysis. n � 1.52, n � n � 1.50, and � � 0.6 �mg f sub cla f

wavelength of � � 0.6 �m, a slab width d � 1 �m, a nonlin-f
ear coefficient � Ž2. � 10 pm�V, n � 1.52, and n � ng f sub cla
� 1.50. These parameters are chosen as typical practical

� �parameters of nonlinear material 2, 3 . The nonlinear coef-
ficient is restricted only in the guiding region of the wave-
guide. The slab waveguide was excited, at z � 0, with a
pulsed first guided mode of the fundamental field, and a zero
field was assumed for the SH. A Gaussian temporal pulse of

fŽ . fŽ . �� 2 �� 2
the form � x, z � 0, � � � x e is assumed, where0
� scales the initial pulse. Figure 2 shows the normalized plot
of the input of an initial pulse width of 100 fs.

3.1. Nonphase-Matched Case. The first simulation involves a
nonphase-matched example in which the modes’ effective
indexes of the guided modes at the carrier frequencies are
not equal. For the parameters of the waveguides of Figure 1
and at the fundamental wavelength, the waveguide supports a
single mode with an effective index of 1.511313. On the other
hand, when the guided layer refractive index at the second
harmonic wavelength n � 1.53, then the waveguide sup-gs
ports three guided modes, with the effective refractive index
of the first guided mode equal to 1.525804. Figure 3 shows
the normalized intensities of the fundamental and the second
harmonic as a function of the propagational direction z. The
plot shows that the two pulses exchange energy with a damped

� �oscillatory behavior 2, 3 . This is a known behavior for the
propagation of a nonphase-matched pulse in � Ž2. material,
where the oscillation is due to the nonphase matching and

Ž .the damping is due to the group-velocity mismatch GVM
� �between the fundamental and the SH pulses 2, 3 .

3.2. Phase-Matched Case. In this simulation, the refractive
index of the guiding layer at the second-harmonic frequency
is changed to n � 1.514741 such that the two modes’ effec-gs
tive indexes of the first guided modes at the carrier frequen-
cies are equal. Figure 4 shows the normalized intensities of
the fundamental and the second harmonic versus the longitu-
dinal distance z for different input’s amplitudes. Due to the
phase-matching effect, a smooth exchange of energy between
the two pulses is demonstrated. It is clear from Figure 4 that,
as the input power increases, the exchange of energy takes
place in shorter distances due to the dependence of � Ž2. on

� �input power 4, 5, 8 . Figure 5 shows the normalized spatial
field plots at the peak of the pulses for the fundamental and

Ž .the SH at various distances every 300 �m inside the wave-

Figure 2 Three-dimensional plot of the input field used in the
analysis, which consists of a pulsed first guided mode with an initial
pulse width of 100 fs
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Figure 3 Normalized intensities of both the fundamental and the
second-harmonic fields as a function of the propagational direction
inside the nonphase-matched optical waveguide. The input field was
excited with an amplitude of 5 � 109 and a pulsed first guided mode
with an initial pulse width of 100 fs

Figure 4 Normalized intensities of both the fundamental and the
second-harmonic fields as a function of the propagational direction
inside the phase-matched optical waveguide for different input am-

Ž 7 7plitudes dashed�dotted is for 1 � 10 , dashed is for 3 � 10 , and
7 .solid is for 5 � 10 and with an initial pulse width of 150 fs. Curves

starting from 1 belong to the fundamental field, and curves starting
from 0 belong to the SH field

Ž . Ž .guide. In Figure 5 a , the fields are the input the largest and
the fundamental fields at every 300 �m in a decreasing order

Ž .of amplitude, while in Figure 5 c , the fields are for the SH in
Žan increasing order of amplitude the largest being at z �

. Ž . Ž .1200 �m . Figure 5 b , d shows the normalized fields of
Ž . Ž .Figure 5 a , c , respectively. For comparison, the normalized

analytical guided mode field at the second-harmonic wave-
Ž .length is also added in Figure 5 d . All of the fields in Figure

Ž . Ž .5 b , d are indistinguishable from each other. It is to be
Ž . Ž .concluded from Figure 5 c , d that strong excitation of the

first guided mode at the SH is taking place due to the
� �phase-matching condition 7, 8 . Figure 6 shows the normal-

ized pulse widths for both the fundamental and the second
harmonic as a function of propagation distance. The normal-

Figure 5 Propagation of the spatial fields inside the phase-matched
slab waveguide using the TD�BPM�SHG. The fields shown are the
input and the propagated fields every 300 �m. All parameters are the
same as those of Figure 4, with an input amplitude equal to 5 � 107.

Ž .The vertical lines show the position of the slab waveguide. a
Ž .Fundamental field normalized to the input amplitude. b Same as in

Ž . Ž .a normalized to the maximum. c SH field normalized to the input
Ž . Ž .amplitude. d Same as in b normalized to the maximum, in addi-

tion to the normalized analytical guided mode field. See text for
other details.

Figure 6 Fundamental and SH pulse widths as a function of
propagation for the phase-matched waveguide. Pulse widths are units
of initial pulse width of the fundamental. All parameters are the
same as in Figure 5

ization is with respect to the fundamental initial pulse width.
Pulse widths of both the fundamental and the SH are broad-

� �ened due to the GVM between the two pulses 1�4 . In the
same figure, the ratio between the pulse width at the SH and
the pulse width at the fundamental also has been included.
The curve shows that the pulse width of the SH starts at

' '� 1� 2 , decreasing to � 1� 3 of the fundamental pulse
width.

Finally, throughout the previous analysis, the following
simulation parameters were used: 
 x � 0.1 �m, 
� � 2 fs,
and 
 z � 0.06 �m. The efficiency of the TD�BPM�SHG is
quite remarkable, with a speed under 0.08 s�propagational
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step 
 z for each simulation of the phase-matched case. This
is measured on an average 600 MHz Pentium III PC, which
means that the entire simulation takes about 25 min to
complete.

4. CONCLUSION

A new technique for modeling pulsed optical beams in dielec-
tric waveguides containing second-order nonlinear effects has
been proposed and implemented. The technique is called the
time-domain beam propagation method for second-harmonic

Ž .generation TD�BPM�SHG , which is an extension of the
linear TD�BPM. It involves solving the coupled parabolic
nonlinear equations using the explicit finite-difference tech-
nique, where all spatial and time variations were retained in
the analysis. The technique was also applied to model pulsed
optical beams in a dielectric waveguide containing second-
order nonlinear effects. It is concluded that the method is
very efficient and simple to implement. The TD�BPM�SHG
is well suited for the study of the unidirectional propagation
of compact temporal pulses over long distances in a guided-
wave environment. In addition, the method should find appli-
cation in the study of spatio�temporal optical solitons in

� �media with quadratic nonlinearity 17 .
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ABSTRACT: This paper describes the effect of ground �ias on signal
integrity when a signal changes layers and passes through multiple
ground planes in a printed circuit board. An equi�alent circuit is gi�en
that models the return current path when a signal passes through
multiple ground planes that are not connected nearby the signal �ia. The
effect is seen as a region of higher impedance than expected on the
destination signal layer. Time-domain reflectometry measurements are
taken on an actual printed circuit board that exhibits this beha�ior. The
empirical measurements are compared to SPICE simulations of the
equi�alent circuit to �erify the accuracy of the model. � 2001 John
Wiley & Sons, Inc. Microwave Opt Technol Lett 28: 257�260, 2001.

Key words: multilayered circuits; packaging; interconnects; PC boards

I. INTRODUCTION

Ž .In a multilayered printed circuit board PCB , microstrip and
strip-line transmissions lines frequently need to be able to

� �change signal layers 1 . In most cases, this involves passing
through multiple ground planes. When this occurs, the ground
return current must also change the layer upon which it
returns to the source driving the signal. If the return current
does not maintain a constant physical relationship to the
signal, the signal may become distorted when it reaches the
signal layer to which it is changing. The negative impact of
this phenomenon can be avoided by ‘‘tacking’’ the ground
planes of a PCB together with vias in the regions where the
transmission lines change signal layers. By connecting the
ground planes together near the signal vias, the return cur-
rent is able to maintain its relationship to the forward travel-
ing signal and avoid distortion. Figure 1 shows a cross section
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