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Abstract— In this paper, aneura networks (NN) based adaptive diding mode controller (SMIC) isintroduced. The
selection of SMC feedback gainsis normally based on one operating point and thus the performance of the
controller away from the design operating point is, of necessty, a compromise. The Adaptive SMC is proposed to
overcome the limitations imposed on the effectiveness of the SMC under different operating conditions. Neurd
networks are used for on-line prediction of the optima SMC gains when the operating point changes. The
proposed method has been applied to a power system stabilizer (PSS) of a single machine power system.

Simulation results are included to demongtrate the performance of the proposed control scheme.
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. INTRODUCTION

The SMC is essentidly a switching feedback control where the gains in each feedback path switch between two
vaues according to some rule. The switching feedback law drives the controlled system’ s state trgectory onto
specified surface cdled the diding surface which represents the desired dynamic behavior of the controlled system.

The advantage of switching between different feedback dructures is to combine the useful properties of each



structure and to introduce new properties that are not present in any of the structures used [1-3]. SMC has been
reported as one of the most effective control methodologies for nonlinear power system gpplications due to its
disturbance regection, strong robustness subject to system parameter variations, uncertainties and  externa
disturbances [1-3]. These gpplications include: rectifier/inverter motor drive [4], synchronous motor [5], wind
energy systems [6], load frequency control [7], power sysem sabilizers [8], and static VAR compensators [9] .
Conventionaly, the design procedure of SMC involves the design of a suitable switching surface that will guarantee
a dable behavior of the system and the design of a suitable feedback gains. However, one of the main problems of
SMC desgn isthe sdection of the feedback gains which are generdly sdected by trid and error such that they will
satisfy certain system performance requirements [1-3]. In al of the above applications [4-9], the feedback gains
arefixed and sdlected by trid and error.

To solve the problem of feedback gains sdection, a diagondization method was proposed in [10]. The
diagondization method involves converson of multi-input design problem into single input design problems and
constructing new control vector via a nonangular transformation of the origina control vector. This will add to the
complexity of controller design as it requires detalled anaytical derivation to satisfy the conditions for the existence
of adiding mode. This problem has also been considered in [11] where dl alowable vaues of the feedback gains
are tried and a performance index for each possible set of feedback gainsis evauated. The optima feedback gains
sected are those which minimize the performance index. This approach is numericdly intensve epecidly for large
numbers of feedback gains. Moreover, the methods proposed in [10,11] employed fixed feedback gains for dl
operating points.

Recently, the design of SMC feedback gains has been formulated an optimization problem where search
optimization agorithms are used [12-14]. In this way, the optimum settings of the SVIC applied to power system
control problems can be found even with the presence of nonlinearities in the modd. This method provides a

systemdtic way of ariving at the optima vaues for feedback gains of the SMC. In [12], genetic dgorithms have



been used to sdect the optimal feedback gain for load frequency control problem. Tabu search has been used in
[13] for the selection of SMC feedback gains for multi-area nonlinear load frequency control. For anonlinear sngle
meachine infinite system, particle svarm optimization has been used to sdect the feedback gains of the SMC
controller [14]. The feedback gains sdlection of the SMC proposed in [12-14] is based on one operating point
which reaults in fixed SMC gains for the entire operating points. Therefore, the performance of the controller away
from the design operating point is, of necessity, acompromise.

The limitations imposed on the dfectiveness of the SMC by different operating conditions can be overcome by
using adaptive control techniques. In this paper, an adaptive diding mode controller (SM C) using neurd networks
is proposed to enhance the performance under different operating points. The relaionship between the system
operating point and the SMC controller gains is highly nonlinear. Neurd networks are known for their universal
nonlinear gpproximation cgpabilities [15]. Therefore, the authors propose the use of NN to perform an on line
nonlinear mapping between the operating points as input and SMC gain as output. The adaptive SMIC will include
a neura network which is trained off-line to update the feedback gains when the operating point changes. The
training data for the neura networks (NN) is generated off-line usng genetic adgorithms following the procedure
described in author’s previous work [12]. To demonstrate the gpplicability of this ides, it has been tested on a
representative power system problem, i.e. Single machine infinite bus. However, this idea can be extended to other

power system problems such as multi-machine and multi area LFC problems

1. THEORY OF SLIDING MODE CONTROL

The fundamentd theory of SMC may be found in [1-3]. Different control goals such as stabilization, tracking,
regulation can be achieved usng SMC by the proper design of the diding surface. The discusson here will be
limited to the regulation problem where the objective is to keep specified states as close to zero as possible. A

block diagramof the SMC for the regulation problem is shown in Figure 1. The control law isalinear Sate



feedback whose coefficients are piecewise congtant functions. Congider the linear time-invariant controllable

system given by
X(t)=AX(t)+BU(t)

Where

X(t) n-dimensond State vector

U (t) m-dimensiond control force vector
A n’n sygem matrix

B n" minput matrix

The SMC control lawsfor the system of (1) are given by

u = -yiTX =- éyijxj;i =12,...m
j=1

Where the feedback gains are given as

if xsjm;i =1....m
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s,(X)=C'X =0, i=1...m
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Where C,’sare the switching vectors which are sdlected by pole placement or linear optimal control theory.
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Figure 1: Block diagram of diding mode controller (SMC)

The design procedure for selecting the constant switching vectors ¢; using pole placement is described below.

Stepl: Define the coordinate transformation

Y =MX @]
such that
€ u
MB= .4 (5)
.4

where M isanongngular n” n matrix and B, isanongngular m” m matrix.
From (4) and (5)
Y = MX = MAM 'Y + MBU ©

Equation (6) can be written in the form
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where A, A, Ay, A, aerepectively (n-m)” (n-m), (n-m)" m, m" (n-m) and (m" m) submatrices. The firs
equation of (7) together with (3) specifies the maotion of the system in the diding mode that is
Y, = A+ ALY, )
a (Y)=CY,+CyY, ©)
where C;; and C;, arem’” (n-m) and (m” m) matrices, respectively satisfying the rdation
[C.C,]=C™M ! (10)
Equations (8) and (9) uniquely determine the dynamicsin the diding mode over the intersection of the switching
hyperplanes
s(X)=C'X =0, i=1,....m
The subsystem described by (8) may be regarded as an open loop control system with state vector Y, and control
vector Y, being determined by (9), that is
Y, =-C,CY, (11)
Consequently, the problem of designing a system with desirable propertiesin the diding mode can be regarded asa
linear feedback design problem. Therefore, it can be assumed, without loss of generdity, that C,, = identity matrix
of proper dimension.
Step 2: Equations (8) and (11) can be combined to obtain
Yo=[A- AGM (12
Utkin and Yang [16] have shown that if the pair (A, B) is controllable, then the pair ( A, A, ) isaso controllable.

If thepair (A;,A,,) iscontrollable, then the eigenvalues of the



matrix [Al - A_zCn] in the diding mode can be placed arbitrarily by suitable choice of C,,. The feedback gains
a; aeusudly determined by smulating the control system and trying different values until satisfactory performance

isobtained.

[11. ADAPTIVE SLIDING MODE CONTROLLER

The proposed SMC involves the following steps:

1) Generating data for the SMC gains that corresponds to different operating points using genetic dgorithms.

2) Training and testing of the neurd network to perform the nonlinear mapping between the operating points and
SMC feedback gains.

3) Online implementation of the proposed SMC.

These steps are described in the following subsections:

A. Data Generation Using Genetic Algorithms (GA)

Genetic dgorithms are directed random search techniques which can find the globa optima solution in complex
multidimensiona search spaces[17]. GA employs different genetic operators to manipulate individuasin a
population of solutions over severa generaions to improve their fitness gradualy. Normally, the parameters to be
optimized are represented in abinary string. To sart the optimization, GA use randomly produced initid solutions
created by random number generator. This method is preferred when a priori knowledge about the problem is not
available.

Theflow chart of asmple GA isshown in Figure 3. There are basically three genetic operators used to generate
and explore the neighborhood of a population and salect a new generation. These operators are selection,
crossover, and mutation. After randomly generating the initial population of say N solutions, the GAs uses the three

genetic operatorsto yield N new solutions at each iteration. In the selection operation, each solution of the current



population isevauated by itsfitness normaly represented by the vaue of some objective function, and individuas
with higher fitness vaue are selected. Different selection methods such as stochastic selection or ranking-based

sdection can be used.
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Fgure 3: How-chart of GA

The crossover operator works on pairs of selected solutions with certain crossover rate. The crossover rateis
defined as the probability of applying crossover to a pair of selected solutions. There are many ways of defining this
operator. The most common way is caled the one-point crossover which can be described as follows. Given two
binary coded solutions of certain it length, a point is determined randomly in the two strings and corresponding
bits are swapped to generate two new solutions. Mutation is arandom dteration with smal probability of the binary

vaue of agtring pogition. This operation will prevent GA from being trgpped in aloca minimum. The fitness



evauation unit in the flow chart acts as an interface between the GA and the optimization problem. Information

generated by this unit about the quality of different solutionsis used by the selection operation in the GA. The

agorithm is repeated until a predefined number of generations have been produced.

The use of GA to generate SMC feedback gains for different operating points is described by the following steps

[12]:

1) Generate randomly a set of possible feedback gains.

2) Evduate a performance index when the system is subjected to a change in the operating point for dl possble

feedback gains generated in step 1.

3) Use genetic operators (selection, crossover, mutation) to produce new generation of feedback gains.

4) Evauate the performance index in step 2 for the new generation of feedback gains. Stop if there is no more
improverrent in the vaue of the performance index or if certain predetermined number of generation has been

used, otherwise go to step 3.

B. Training and Testing of the Neural Network (NN)

A multilayer neurd network is alayered network congsting of an input layer, an output layer, and one or more
hidden layers. Each layer conssts of a set of neurons which are fully connected to the neuronsin the next layer. The
connections have multiplying weights associated with them. The number of neurons and hidden layersis problem-
dependent. However, it has been proved that one hidden layer can perform any nonlinear mapping and no more
than two hidden layers are needed [15]. A multilayer feedforward neura network with one hidden layer isshownin

Figure 4.
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Fgure4: A multilayer feedforward neura network

The connection weights between the neurons and thresholds are determined using the generdized deltarule [18].
The process of determining the weightsis cdled training or learning process. The training process requires a set of
input and output patterns. The patterns are fed into the neura networks. The neurons in the input layer receive input
sgnals, the activation signas propagate forward, through the hidden layer(s), to the output layer. The output layer
then givesthe desired output. The network learns by comparing its output of each input pattern with the actua
output of that pattern. The error (the difference between the actua outputs and the predicted outputs of the

network) is calculated and propagated backwards from the output to the hidden layer to the input. Thisis done by

minimizing the error function:
1
E=3 E, =784 v"f (13)
p p k

where t, isthe actua output and 'y, is the predicted output of the neural network.



The inputs to the neura network used for the adaptive SMC corresponds to the system operating points while the
outputs generated by the NN represent the SMC feedback gains. The training of the NN is performed using the

data generated by the GA. Normadly, the dataiis divided into two parts; one for training and the other for testing.

C. Online Implementation of the Proposed SMC

The block diagram of the proposed adaptive SMIC is shown in Figure 6. As the operating point changes, the neurd

network will adaptively produce new feedback gains suitable for this new operating point.

Operating
SMC Control Points
Signal Plant : Neural
. Network
SMC l
Feedback
Gans

Figure 5: Block diagram of the proposed SMC

V.SIMULATION RESULTS
The proposed adaptive SMC is applied to the design of a power system stabilizer (PSS) of a single machine power
system modd where the syslem mode is a function of the operating point defined by active and reactive powers
(P, Q). The need for adaptive SMC comes from the fact that the nodel discussed operates over awide range of

operding points, some of which are ungtable. Thus, no sngle SMC with fixed feedback gainsis sufficient for the



entire operation. FHgure 6 shows the block diagram of the linearized power syssem modd for low-frequency
oscillation studies. The dynamic modd in date-variable form can be obtained from the transfer function model and

isgiven as[19]

X(t)=AX(t)+Bu(t)+Fd(t)
where
X(t)=[ow(t) Dd(t) Def(t) De(t)],

U(t) :u(fromSMC)’ d(t) = DTm(t)
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W isthe rotor speed (rad/sec), d isthe machine shaft angular displacement (degree), D is the damping coefficient,

F= 0 0O

o C'_|

M is the inertia congtart, e'q is the voltage proportiond to the fild flux linkages of mechine, e, isthe generator fied
voltage, K, - Ky are congants of the linearized moddl, K ,, isthe autométic voltage regulator gain, T, isthe
automatic voltage regulator time congtant (sec), T, d-axis trangent open dircuit time constant. The control

objective in the PSS problem is to keep the change in frequency (Dw ) as close to zero as possible when the
operaing point changes by manipulating the input (u). For this plant, the pair (A, B) has been found to be

controllable.



OT ™ 1 Dw W, Dd
./ | D+sMm s
|
Kz K4 Ks

— — | u

De, Ks Ce,, Ka ‘C (from SMC)
1+ KTy 1+sT, )

C

(2]

Figure6: Block diagram of a single machine power syssem mode

Following the GA design procedure described in Section [11.A, crossover and mutation probabilities aswell as

population size of 0.7, 0.001, and 35 are used respectively to get the optimal SMC gains (a, anda ,)
corresponding to different operating pointsin the range (P from 0.1 to 1p.uand Q from-1to 1p.u) The

performance index given by:

J :z‘j?)wz(t) dt

will be minimized usng GA. The minimization of this performance index will keep the change in frequency (Dw ) as
closeto zero as possible regardless of the control effort (u). The behavior of the performance index isshown in

Hgure 7 where it can be seen that the convergenceis very fas.
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Figure 7: Vdues of the Performance Index (J)

In the NN training process 210 operating points generated by changing P from 0.1 to 1.0 (per unit) and Q from —

1to1 (per unit) which represent the practical operating range of the studied system, are used. The change has been

made in gepsof 0.1 In practice, any step change can take place. The neurd network used has two inputs (P, Q),
two outputs (a; anda ,, ), and 30 neuronsin the hidden layer. Figure 8 shows the online implementation of the
proposed adaptive SMC. When the operating point (P, Q) changes, the trained neura network will adaptively

produce new feedback gains (a, anda ,) suitable for this new operéting point.
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Figure 8: On-line implementation of the adaptive SMC.

The results of training and testing the neura network are shown in Figure 9 and Figure 10. Thefirg 80 percent of
data were used for training and the rest 20 percent were used for testing of the neural network. Findings indicate

good agreement between the actud feedback gains (generated by GA) and outputs of the neural network.
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Figure 9: Actud (-) and predicted (....) valuesof a,
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Figure 10: Actudl (-) and predicted (....) valuesof a,

For the operating point of (P=0.1, Q=1.0), afixed variable structure controller for the above system has been
designed. To reduce the complexity of the SMC, the two states Dw and Cd are used for feedback. The
switching vector is given to be [20]

C=[-30000 -972134 1070026 1"

and the feedback gains obtained using genetic dgorithms are

a, =18.5109 a, =4.2116

Figure 11 shows the smulation results of the change in frequency (Dw ) when the operating point of the systems
changes from (P=0.1, Q=1.0) to (P=0.3, Q=-0.9) a time 10 seconds which has not been used in the training s&t.

This figure demongrates the effectiveness of the adaptive SMC in damping the frequency oscillations. On the other

hand, Figure 12 shows the change in the torque angle when using the fixed and adaptive SMC.
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Figure: 11 Changein frequency ( Dw ) for fixed and adaptive SMC gains: (-) for fixed, (...) for adaptive
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Figure 12: Changein torque angle (Dd ) for fixed and adaptive SMC gains. (-) for fixed, (...) for adaptive



It isquite clear that the adaptive SMC drives the torque angle to its steady state value much faster than the fixed
SMC. Fgure 13 shows the control efforts of the fixed and adaptive SMC gains. The figure clearly demondtrates

the lower control effort needed for the case of adaptive SMC gains.
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Figure 13: Control efforts for fixed and adaptive SMC gains. (-) for fixed, (...) for adgptive

VI. CONCLUSIONS
In this paper, an adaptive neurd network based SMC has been developed for a PSS of a single machine
power system. The use of adaptive output feedback is motivated by the fact that the single machine power
system operates over awide range of operating conditions and hence no single SMC gains are sufficient for the
entire operation. The neura network is used to adaptively predict the suitable SMC gains for any operating point.

The training data for the neura network has been generated using genetic dgorithms. Simulation results indicate



that fixed SMC can not perform satisfactorily for awide range of operating points, while the controller

performance is greatly improved by the use of adaptive SMC.
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