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Abstract

This paper investigates the use of particle swarm optimization in the identification of
Hammergtein mode with known nonlinearity structure. The parameters of the Hammerstein
mode are edimated usng paticle svarm optimization from the input-output data by
minimizing the error between the true model output and the identified modd output. Using
paticle swarm optimization, Hammergein modds with known nonlinearity Structure and
unknown parameters can be identified. Moreover, sysems with nortminimum phase
characterisics can be identified. Extendve smulations have been used to sudy the
convergence properties of the proposed scheme. Smulation examples are included to

demongtrate the effectiveness and robustness of the proposed identification scheme.



Introduction

The dynamic behavior of many chemica processes can be gpproximated by adtatic
nonlinearity in series with a linear dynamic part as shown in Figure 1. This modd dructure is
known as the Hammerstein modd which has been successfully used to modd a large class of
nonlinear sysems.  The examples in which this modd was applied are nonlinear filters [1],
nonlinear network [2], detection of sgnds in non-Gaussan noise [ 3], nonlinear prediction [4],
nonlinear data transmisson channds [5], control systems [6], noise cancdlation [7], heat
exchangers [8], identification of biologicd sysems[9], and many others. The above examples

show the need for agorithms able to recover nonlinearities in systems of various kinds.
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Figure 1. Hammerstein Model Structure

The literature o Hammerstein modd is extensive and reflects considerable current
activity [10-18]. The Hammerstein modd is completely identified if the parameters describing
the linear part and the gtatic nonlinearity can be precisdy estimated from input-output data.
This approach will preserve the system structure and provide vauable information for many
engineering gpplications. Many identification methods have been developed for identifying
Hammerdein modes [19-24]. These methods can be divided into parametric and
nonparametric methods. For the parametric methods the Hammerstein mode is represented

by the following equationg 21][23]:
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The non measured intermediate variable x(k) is the output of the static nonlinearity given by
X(K) = cqu(k) + czuz(k)+ ...... + cLuL (k) 4

Where g lis the unit dday operator, u(k) is the input, y(k) is the output, w(k) is the

measurement noise, (M, n) represent the order of the linear part, and L is the degree of the

polynomid. Thus, the problem of Hammerstein modd identification is to estimate the unknown

parameters  ag, ...... ,8n, bg...... By, and cq,...... ,cL from input-output data. The

unknown parameters are estimated by transforming the problem into multi-input Sngle-output

(MISO) linear identification problem. The inputs to the MISO linear system are u(t),
W (t),...., u-(t). The main drawbacks of this approach are the assumption that the

nonlinearity is of polynomid form and the increase in the number of inputs in the linear
identification problem. Moreover, it has been shown in [24] that if the nonlinearity is not a
polynomia and the input is not Gaussan, these agorithms do not converge.

Different nonparametric approaches [25] have been usad for the Hammerstein modd
identification. Most of the nonparametric methods use kernels regresson estimates to identify
the nonlinearity. In these methods, the identification of the nonlineerity is performed separately

from the linear part.



Recently, neural networks have been used to modd the nonlinearity in the Hammerstein model
for angle-input angle-output (SISO) systems [19], and multi-input multi-output (MIMO)
systems [20].

None of the previous methods have considered the case when the sructure of the
nonlinearity is known with unknown parameters. This case can aise in many practica
aoplication including nonlinear actuators in control systems. Examples of nonlinearities in the
actuators include saturation, dead zone, backlash, coulomb friction, etc. Usudly, the
mathematical mode Structure of these nonlinearities is known, however, some or al mode
parameters may not be known. Moreover, previous methods can not be used D identify
Hammerstein mode with nor-minimum phase linear part. This problem has been addressed by
the author using genetic dgorithms in his work [31], but better results in terms of speed of
convergence and accuracy are obtained in this paper using particle swarm optimization.

Recently, particle swarm optimization (PSO) have been used extensvely in solving
many optimization searching problems [26-29]. Compared to conventiona optimization
methods, PSO does not assume that the search space is differentiable or continuous. Also
PSO does not require linearity in the parameters which is needed in iterdive searching
optimization techniques. This property of PSO makes it suitable to the identification of
Hammerstein modd with nonlinearities of known structure and unknown parameters which
represents a nonlinear in the parameters identification problem.

In this paper, we propose a PSO-basad scheme for the identification of the nonlinear
Hammerstein mode with known nonlinearity structure. Thisis accomplished by formulating the

identification of the Hammerstein model as an optimization problem



and the PSO is used in the optimization process. In the PSO method, the input-output
measurement data are used to estimate the modd parameters such that a certain objective
function is minimized. The advantages of usng PSO indude the possbility to identify
Hammerstein modeds with non-minimum phase linear part and any nonlinearity with known
structure and unknown parameters.
2. Particle Svarm Optimization

Particle swarm optimization (PSO) was developed through smulation of a smplified
socid system. In the smulation model of asocid system, each particle position can be thought
of being a date of mind of a paticular setting of abdract variables that represent the
individud's beliefs and attitudes. The movement of the particles thus correspond to the change
of these concepts. Swarms or socia groups adjust their beliefs and attitudes through the
evauation of simuli from the environment and compare it to their existing knowledge. If such
gimuli or vaues are found to be more fit, they replace ther existing vaues. These three
important properties of human or anima socia behavior i.e., evauation, comparison, and
imitation, are the inspiration for he particle swarm optimization agorithm, and the particle
svarm uses these concepts in adapting to the environmental changes and solving complex
minimization problems.

Besdes being a modd of human or animad behavior, the particle swarm is closaly
related to swarm intelligence. Using PSO, there is no centrd control and no one gives orders.
Each particle is a ample agent acting upon locd information. But the swarm, as a whole, is

able to perform tasks whose degree of complexity is well beyond the capabilities of an



individud particle. This is due to sdf-organization. The interactions among the particles (low-
level components) result in complex structures a
the swvarm (high-level or globd) level making is possible for it to perform optimization of
complex functions. These basic principles for PSO are:
* The proximity principle: The svarm should be able to carry out smple
time and space caculations.
* The qudity principle: The swarm should be able to respond to quality
factors in the environment.
* The principle of diverse reponse: The swarm should not commit its
activities dong excessvely narrow channels.
* The principle of stability: The swarm should not change its behavior
every time the environment changes.
* The principle of adaptability: The svarm must be able to changeits
behavioral mode when its worth the computationa price.

Thus, the PSO system is thought of as an intelligent system. Thisis because it is based
upon atificid life and has rootsin Evolutionary Computetion (EC).

Like in other Evolutionary Computation methods, the particle swarm condsts of a
population of individuals that represent solutions to the optimization problems we need to be
solved. An optima solution is selected through an iterative and probabilistic modification of
these solutions. There not much difference in PSO and other Evolutionary Algorithms (EAS) in
EC-terms. However, the difference lies in how we change the population/swarm from one

iteration to the next. In EAS, genetic operators like sdection, mutation and crossover are used



whereas in PSO, the particles are modified according to two formulas after each iteration.
Also, conceptualy, in PSO, the particles stay alive and inhibit the search space during the
whole run, where as in EA, the individuds are replaced in each generation. Another
fundamenta conceptua

difference is that in EA the objective is reach through competitive search whereasin PSO, it
is reached through cooper ative search.

Thus, PSO differs from other EAs [26-29] in terms of peformance. The EA
techniques have been successfully applied in many areas. However, PSO is a more robust and
fast dgorithm tha can solve nonlinear, non-differentidble, multi-modal problems. Such
problems involve the minimization of a atic objective function i.e,, the main god of a globd
minimizer that does not change. The PSO technique can generate a high-qudity solution within
shorter cdculaion time and stable convergence characterigtic than other stochastic methods.
Dueto this ahility, it is effective in solving problemsin awide variety of scientific fieds.

As in other EAs, a population of individuds exist in PSO. However, here instead of
using genetic operators, these individuals are "evolved" by cooperation and competition among
themsdlves through generations. Each particle adjudts its "flying" according to its own
experience as well as its companions experience. Each individud, caled a "particle’ in fact,
represents a potential solution to the problem.

Each particle is trested as a point in D-dimensond space. The ith paticle is
represented as

X:. = (Iil,x:':w--:x:'ﬂj
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The best previous position (the position giving the best fitness value) of any paticleis
recorded and represented as
P = (Pe1Pizs- -+ Do) ©)
Smilarly, the postion change (velocity) of each particleis
V, = (Ve Vizs oo s Vip) W
The particles are manipulated according to the following equations

VP = WVl by erl (PR —XP) +p <1l x (B — XD)

Xt = Xt 4 x=yrt

(8)

3. Proposed PSO-Based I dentification M ethod

The Hammerstein mode is represented by the following equations:
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The non measured intermediate variable x(k) isthe output of the nonlinearity given by

x(k) = f@,u(k)) (12)
Where q 'is the unit delay operator, u(k) is the input, y(k) is the output, w(k) is the
measurement noise, M, n) represent the order of the linear part, and f(.) is any nonlinear
function, q is a set of parameters describing the nonlinearity. Thus, the problem of

Hammerdein  modd  identification is to edimae the unknown parameters



b

. » and q from input-output data. For nonlinearities with unknown
structure, the polynomia gpproximation asin Eqn. 4 can be used.
The use of PSO in the esimation of the unknown parameters requires a fitness

function to be defined to determine how well the estimates fit the system, and the domain of

the unknown parameters to be specified. The following fitness function can be defined:

M
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R(K) = Gu(K) + &U (K)+.....+6 U (k) (17)
Where M is the number of input-output data points used in the identification, and the
parameters estimates 4, ......, a, b,....., b, and q ae found by minimizing the fitness
function given by Egn 9. To determine the domain of the parameters of the linear part, Eqn. 6

and Eqn. 7 can be transformed into pole-zero form given by
B(@ ) =bo(1- 10" H)(L- 2207 ) ..o (L- z@™ ) (18)
A@ Y= (- pd A pog ) (2 ppd Y (19)
Where p(i =1...,n),and z; (j =1,..., m)are in generd complex numbers. For stable

systems, the redl and imaginary parts of p mud lie in the intervd from -1to 1. Also, for



minimum phase systems, the red and imaginary parts of z; mugt liein theinterval form -1 to 1.

If the system is non-minimum phase, one has to decide how big the search space is depending
on prior knowledge of the system. Also, one has to decide how big the search spaceis for the
parameters describing the nonlinearity. Note that the
optimization is nonlinear in the parameters and gradient based optimization techniques can, at
best, produce locad minima. The proposed PSO-based identification agorithm can be
summarized in the fallowing steps:
1) Generate M input-output data points form the system to be identified.
2) Generate random initia solutions for zeros and poles of the linear part, and the parameters
of the nonlinearity in the gppropriate range.

3) Evaduate the fitness function for dl possible solutions generated in step 2.
4) Use Eqgn. 5-8 to generate new generation of solutions.
5) Evduate the fitness function for the new generation.
6) Repeat step 4 until predetermined number of generation has been produced.
4. Convergence Analysis

Extensgve smulaion sudies for the proposed identification scheme show that the
accuracy of estimation of the parameters of the proposed method is greetly affected by the
choice of the input sgnds. This is because any modd developed from input-output data set is
just a representation of the information contained in that deta set. Among the most important

issues that must be considered when generating input sgnds for system identification are:
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Sysgem noise if the system is noisy it may be necessary to increase the amplitude of the
input Sgnals such that the signd to noise rétio is large enough and estimates of acceptable
accuracy can be obtained.
Nonlinearities The input Sgnas must be suitable for obtaining a characterization of the
nonlinearities behavior. The amplitude of the input Sgnals must be increased to engble the
nonlinearities of the system. The sdlected maximum input amplitude
influences the modd parameter estimates. For example, a smdl input amplitude which
does not enable the nonlinearity will result in alinear mode for the nonlinear system.
Identifigbility: certain conditions must be imposed on the input sgnds such that the
underlying properties of the Inear part can be identified [20]. This means that the input
sgnds should be persastently exciting which requires that the sgnal should adequately span
the bandwidth of the system being identified. In [21] uniform or Gaussan random inputs
are suggested for the use in the identification of nonlinear systems.
5. Simulation Results
In this section, the proposed identification approach is applied to different examples
with practical gatic nonlinearitiesincuding saturation nonlinearity, coloumb friction nonlinegrity,
saturation with dead zone, with different linear parts. The performance is evaluated under

various Sgnd to noise retios (SNR). Consider the following process with the linear part given

by:

y(k) _ (1- 297 Y- 29
x(k)  (1- pa HA- pa (- psg Y

it



Different pole-zero configurations and different nonlinearities have been used as shown in
Table 1. Usng uniformly distributed random inputsin the range [- 1,1], the process outputs are
generated using the process modd. The added measurement noise is zero mean white
Gaussan with different variances to achieve different SNR The proposed identification
gpproach is used to identify the poles, zeros and parameters of the different nonlinearities as
shown in Table 1. Theresults shown in Table 1 indicate that

accurate and consistent results can be obtained even for low SNR. The behavior of the cost
function for one of the examples given in Table 1 is shown in Figure 2 which indicates arapid

convergence to the optimal solution.

cost function

[teration Mumber

Figure 2: Convergence of the Cost Function
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Zerosand polesof the | Typeof thenonlinearity | Parameters
linear part of the
nonlinearity

Truevalues z=41, p =038, Saturetion a =05,

p,=-02,p; =-05 : a for u(? % b =22

x(K) = ? b u(k) for—%< u(k)<%
la foruk) E—%

Estimated z =4.0973, a =0.5000,
values: p, = 0.7999, b =2.2013
SNR=30dB p, = -0.1995,

p; = - 0.5002
Estimated z =4.0895, a =0.5000,
values: b, = 0.7995, b =2.2048
SNR=10dB b, = - 0.1987,

p; = - 0.5004
Truevalues z, =12, Columbic friction a =40,

p, =0.1- jO.5, x(k) = sign(u(k))faju(k) + b} b =05

p, =0.1+j0.5,

p; =0.9

i3




Estimated z =1.1999, a =40,
values: p, =0.1- j0.4999, b =0.5001
SNR=30dB p, = 0.1+ j0.4999,

p; =0.9
Estimated z =1.1996, a =40,
values: p, = 0.0999- j0.4994, b =0.5005
SNR=10dB p, = 0.0999+ j 0.4994,

p, = 0.8998
Truevalues z=02,2,=28, Relay with dead zone a=41,

p =038, L a for u®® b b =05

x(K) = I 0 for -b<u(k)<b

p,=-02,p;=-05 %-a for u(k) £-b
Estimated z =0.2074, a =4.0985,
values: z, = 2.8032, b =0.5002
SNR=30 dB 0, = 0.8010,

p, =-0.1899,

p, = - 0.5032
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Estimated z =0.1889, a =4.0869,
values: z, = 2.8069, b =0.4995
SNR=10 dB 0, = 0.7989,

p, =-0.2173,

p; = -0.4929

Table 1: Smulaion Results

5. Conclusion

Theuseof PSO in the identification of the nonlinear Hammerstein mode with known
nonlinearity dructure has been invedtigated in this pgper. The Hammergtein identification
problem has been formulated as an optimization problem and PSO is used to estimate the
unknown parameters from input-output data. The advantages of usng PSO incdlude the
possibility to identify systems with known nonlinearity structure and unknown parameters, and
systems with nortminimum phase linear part. Extensve smulations have been usad to study
the convergence properties of the proposed identification scheme. Smulation results reved
that accurate and consistent results can be obtained even for low signd to noise ratios. The

proposed gpproach can be extended to other types of linear systems with static nonlinearities.
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