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CHAPTER 1

NONLINEAR SLAB AND CYLINDRICAL WAVEGUIDES

1.1 INTRODUCTION

The nonlinear effects in optical fibers and dielectric waveguides have
received a growing interest in the last two decades. The nonlinear guided
and surface waves have been investigated in many different respects

particularly in planar waveguides.

A complete study of nonlinear phenomena in optical fibers and fiber
devices requires the solution of nonlinear wave equations subject to the

appropriate boundary conditions.

For the slab waveguide, the nonlinear wave equation in rectangular
coordinates can be solved. analytically for certain types of nonlinearities such
as the Kerr-like nonlinearity. However, in fibers there have been no
analytical solutions of the nanlinear wave equation and numerical techniques

must be used to find the solution.

The research work proposed here uses a multilayered technique for

solving nonlinear optical fiber problems. The nonlinearity under
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consideration will be the third order Kerr-like nonlinearity with a single

frequency input and a single frequency output. The saturation limit of the

dielectric constant will also be considered.

The applications of nonlinear optical effects and nonlinear guided waves
have been shown to cover wave mixing process., harmonic generation,
parametric amplification, self-focusing, self-defocusing and a wide range of
devices including bistable switches, logic gates. optical limiters, bandpass

power filters, periodic structures, and optical filters.

In this thesis, we are interested in the guided modes of optical fibers. A
considerable part of the recent work in guided waves is now directed to study
the nonlinear fiber. The nonlinear fiber may be one of the three
configurations, linear core-nonlinear cladding. nonlinear core-linear cladding

or nonlinear core-nonlinear cladding.

in the following sub-sections we will study the research work related to
the nonlinear guided waves in optical fibers as well as in slab waveguides. It
can be shown that some of the nonlinear dispersion characteristics are
camman in both fiber and slab waveguide. The field distributions will alsc be
investigated for both cases. The multi-layer technique adopted in this thesis
is not only applicable to the nonlinear waveguide problems, but it is also
applicable to any arbitrary refractive index profile. Thus it can be used to

solve graded-index profiles and waveguide structures that involve a metallic
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layer as the outer layer. In chapter 4 of this thesis an extensive work has
been done to study the attenuation characteristics of metal-ciad cylindrical
waveguide. The objective of such a study is to check the recursive scheme
in complicated waveguide structures and at the same time to report some of
the important attenuation‘characteristics of cylindrical metal-clad waveguide.

These attenuation characteristics have not been studied in literature as will

be seen in chapter 4.

It can be seen from the literature review of section 1.3 that the nonlinear
optical fiber has not been investigated in full, specially when the nonlinearity
is of saturable type which is more practical and realistic than the Kerr
nonlinearity. The research study presented in this thesis is devoted to the
investigation of guided modes in nonlinear cylindricai waveguide. The
nonlinearity of the waveguide media is considered of saturable type. There
are two different structures of the nonlinear optical fiber. The first one
consists of a nonlinear core and a linear cladding while the second structure
is 'formed of a linear core and a nonlinear cladding. TE, TM and hybrid
modes are to be studied in the proposed work. In the case of the
fundamental HE,, mode all the six field components are utilized by the
recursive scheme. It is thus considered more rigorous than those used in
literature which involve the use of linearly polarized modes. In such LP

approximation the problem reduces to only three field components and can
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be treated using the recursive scheme in a manner similar to the TE modes.

The solution of the problem is carried out numerically using two different
numerical schemes. The first scheme is a multilayer one in which the
nonlinear fiber is divided into a large number of linear sub-layers. In each
layer the wave equation is solved linearly by considering the effect of the
local field on the dielectric constant. The second scheme is, however, based
on the self-consistent behavior of electromagnetic fields. In this approach
the solution of the nonlinear wave equation is obtained through a successive
number of solutions for a linear graded-index profile problem. The two

scheme will be explained in details in chapter 3.

1.2 THE NONLINEAR SLAB WAVEGUIDE

The nonlinear effects in slab waveguides have received a large attention
in the last few years. Because our main objective is to study nonlinear guided
modes in fibers, we will only concentrate on the relevant slab work which
serves our purpose. In 1987, Al-Bader and Jamid [1] studied the nonlinear
TE waves in a nonlinear thin film. The waveguide structure consists of a
nonlinear self-focusing film cladded in both sides by linear media. The TE
wave dispersion relations have been obtained for both symmetric and
asymmetric solutions. Both Kerr and saturable nonlinearities were
considered. The saturation limit has been considered in [1] for the first

time. The research work preceding [1] accounts only for Kerr-nonlinearity.
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The dispersion characteristics are shown in fig.(1.1a). The symmetric
solutions (broken lines) show a multivalued dependence of the effective index
on surface intensity. This is the case for relatively high saturation levels. This
is an important feature of nonlinear guided waves. For low saturation levels
the dependence of the effective index on surface intensity is monotonic. Only
the fundamental TE mode has been studied. The relation between guided
power and effective index has also been obtained for different saturation
levels, as shown in fig.(1.1b). In this figure all curves start at the same
asymptotic line which corresponds to the minimum value of the effective
index. The field distribution corresponding to these dispersion
characteristics are evaluated. The problem of Kerr nonlinearity has been
solved analytically and numerically. The two solutions are consistent. For the

saturable nonlinearity there is no analytical solutions available and only the

numerical technique is used.

The TM polarized waves in a nonlinear thin film bounded by linear media
is investigated in [2]. A multilayered scheme is introduced to study the
problem. The nonlinear medium is divided into a large number of layers.
Fach layer is characterized by an isotropic linear dielectric constant. The
value of the dielectric constant is determined from the information of the field
distribution of the previous layer. Therefore, the nonlinear wave equation is
treated for each layer as a linear wave equation with the dielectric constant

calculated locally from the field information. A similar recursive multilayered
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scheme is used to study the nonlinear fiber in our proposed work.

It must be noted that most of the research work in nonlinear guided

waves has been devoted to the Kerr nonlinearity in which the dielectric

constant is given by:
& = g,y + alE|® (1.1)

Where ¢, is the background dielectric constant with no field applied, «a is the

nonlinear coefficient of the material and lE[2 is the local field intensity. The
kerr model is relatively simple to analyse and the problem with Kerr

nonlinearity can be solved analytically for some cases [2].

However, this model is not realistic. The nonlinear material always
responds to the applied field up to a certain limit. Any further increase in the
applied field will not affect the value of the dielectric constant. It may cause a
complete breakdown of the dielectric material. The use of a saturable
dielectric function is a result of this fact. The saturable expressions of the
dielectric materials are more realistic and based on the fact that the dielectric
function cannot grow indefinitely but must level off at a maximum value that

depends on the nature of the nonlinear material. Two models have been

shown in [3] as follows:
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8
2
e=¢ + —CEL (1.2)
bg >
1+galE]
2
£ =g, + -;-(1—e““'f' ) (1.3)

where the maximum increase in the dielectric function is equal to — for an

infinitely intense field. These two models of saturation have also been used in

1]

The dispersion‘ relations for the fundamental TM mode are obtained in
terms of the mode index versus both guided power and surface intensity.
They are shown in figs. (1.2.a) and (1.2.b) respectively. For low values of
saturation level the mode index is a monotqnic fqpcﬁpn of t_he intensity.
For the Kerr nonlinearity and high level of saturatioﬁ the' relétion is generally

a multivalued i.e. for the same value of surface intensity there are two values

of the effective index.

In the above citations we have considered one configuration of nonlinear
planar waveguide in which the nonlinear thin film is surrounded on both
sides by linear media. Another important nonlinear planar waveguide

structure has been given by Sang-Yang Shin et al. [4] in 1989. This
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waveguide consists of two parallel dielectric thin films separated by a layer of
linear medium and bounded on both sides by a nonlinear Kerr medium. It is
therefore considered a five layers structure forming a nonlinear directional
coupler. In the nonlinear directional coupler the coupling between the two
waveguide channels is controlled by the input power. This has an important

application in the design of optical logic gates.

The technique of solution used in [4]. is based on iniegrating the wave
equation in the nonlinear regions and imposing the condition that the
transverse field vanishes at infinity. The wave equation in the nonlinear
region is solved directly in terms of trigonometric functions. The solutions are
then matched at each interface to obtain the propagation constant and the

corresponding field profiles.

The dispersion characteristics for this directional coupler are shown in
fig.(1.3.a) for a structure similar to that described above and in fig.(1.3.b) for a
different structure in which one of the nonlinear outer layers is replaced by a

linear medium. Figure (1.3.a) shows that both TE and TE1 modes have two

solutions, symmetric and asymmetric. For the symmetric solution The field

distribution has even symmetry with respect to the axis of the waveguide. .

At low power there are two field maxima, one in each guiding film. This is
the linear state of the problem. As the power increases, each maximum

moves towards the adjacent nonlinear interface. A further increase of the
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12



déo

13

power forces these maxima to cross the interface and lie in the nonlinear
regions. The dispersion relations shown in fig.(1.3.b) exhibits a peak power

for TE1 mode at a certain value of effective index. for the TEu the effective

index varies monotonically with the power.
1.3 THE NONLINEAR FIBER

The work done to study wave propagation in nonlinear optical fibers is
limited. The reason for this is that the theoretical analysis is difficult
compared to the slab waveguide. The solution of the optical fiber problems
in cylindrical coordinates system involves the use of Bessel functions which
are more complicated compared to the trigonometric functions resulting from

the solution of the slab waveguide problems. The simplest structure of a

nonlinear fiber consists of two layers, a core and an unlimited cladding.

Three configurations are considered, nonlinear core - linear cladding, linear

core - nonlinear cladding and nonlinear core - nonlinear cladding. With the
availability of fast computers and efficient numerical techniques, those

analytical difficulties can be overcome.
1.3.1 Fiber with nonlinear core and linear cladding

The first attempt to find the modes of nonlinear cylindrical waveguides
has been carried out by Garmire et al. in 1964 [5]. The wave equation with a

nonlinear Kerr term is solved numerically for a single medium in cylindrical
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coordinates. The conventional waveguide which has a core and a cladding is
not treated here. The waveguide structure consists of unlimited core. The
self-focusing action and the beam diameter will determine the physical
dimension of the waveguide. The work in this reference is devoted to seli-
trapping of optical beam. The self trapping is a state in which the effects of
self-focusing and scattering balance each other under a certain critical value
of the applied power. This will be discussed in more details in chapter 2.
The field profile for this waveguide resembles the fundamental LP mode of an

optical fiber. [t has a peak intensity at the beam axis and decays in the

radial direction.

This work was followed by another investigation by Haus et al. in 1966,
which includes the higher order modes [6]. The first five modes are
analysed numerically. The field distributions corresponding to these modes
have been evaluated and plotted. These field profiles exhibit self-focused
rings. The number of rings is less than the radial mode number by one. For

example, the fifth order mode has four seli-focusing rings.

The chromatic dispersion of a nonlinear fiber has been investigated in [7]
by Okamoto and Marcatili in 1983. The term chromatic dispersion refers to
the dependence of the group velocity on the optical frequency. It arises from
the interaction of an electromagnetic wave with the bound electrons of the

dielectric [8]. Chromatic dispersion is used to determine the chirping
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properties of an optical pulse. Pulses at different wavelengths propagate at

different speeds inside the fiber because of the group velocity mismatch.

The chromatic dispersion char;af:teristics are élosely related to the index
profile and hence they are expected to be different from linear fiber. The
technique used in [7] is based on solving the nonlinear wave equation using a
variational method. Two values of the total power flow have been chosen to
represent the linear and nonlinear states of the fiber. These values are 1
mW and 200 KW respectively. The disperéion relations for the nonlinear
fiber are compared to those of the linear fiber. The wave equation is
assumed to have a Kerr nonlinearity and the fiber is considered circularly
symmetric with no azimuthal dependence. The analysis is therefore an
approximate one valid only for weakly guiding fibers. The scheme used in [7]
divides the fiber into a nonlinear region, surrounding the core and spreading
over a radial distance D equals fivetimes-the core radius, and a linear region
for the radial distance greater than D . The nonlinear region is subdivided
into N subregions. The finite element method is used to find the solution of

this part. The solution of the linear region is given in terms of modified

Bessel function.

The dispersion characteristics obtained in [7] as a plot of the normalized
propagation constant versus the fiber V number have only a slight difference

between the linear and the nonlinear waveguides shown in fig (1.4). For the
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a) Dispersion characteristics of step-index fiber with core nonlinearity.

b) Dispersion characteristics of step-index fiber with cladding nonlinearity.
b(v) is the normalized propagation constant, d(v) is the normalized group
delay and g(v) is the waveguide dispersion [7].
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nonlinear fiber with nonlinear core and linear cladding, the nonlinear

propagation constant is relatively greater than the corresponding linear case

for the same V number.
1.3.2 Fiber with linear core and nonlinear cladding

The case of linear core and nonlinear cladding is treated by Boardman et
al. [9] in 1986. The field solutions for the fundamental mode HE,, are
obtained from the scaler wave equation with no azimuthal dependence for a
radially symmetric fiber. A new class of radially symmetric waves is

reported. This class of waves creates self-focusing rings of energy flowing

parallel to the fiber axis.

The investigation is done for the Kerr nonlinearity where the nonlinear

cladding is assumed to have a refractive index of the form n =nc+n|E|2' The

wave equation used for this investigation is simplified representing only the
weakly guiding fiber. The modes of such a fiber are linearly polarized. The
linearly polarized ( LP ) modes are characterized by an electric field vector
pointing in one direction in the transverse plane and a magnetic field vector
perhendicular fo that direction. The axial components are neglected with
respect to the transversé component. Theref'ore LP r-nodes -are similar to
TEM waves in parallel plates transmission lines. If the nonlinear term added

to the dielectric constant is very small compared to the the backgiround
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value, the LP approximations can be used to solve the wave equation and
find the nonlinear guided modes. On the other hand if the nonlinear term is

relatively high, a complete rigorous solution of the wave equation should be

obtained.

The important conqlusion of this work is that unlike the linear fiber the
field can have a maximum which takes place in the nonlinear region. Also the
mode index can exceed the core value. For this case the guided waves are
transformed into surface waves. The stability of these nonlinear waves is
given in terms of the slope of the power versus mode index curve. If the
slope is positive the solution is stable. If it is negative the solution needs

more investigation to decide about its stability.

Akhamdiev et al. have investigated the linear cylindrical waveguide
surrounded by nonlinear medium [10] in 1985. Only TE modes have been

reported. The nonlinearity of the cladding is also Kerr-like with dielectric
constant of the form ¢ =¢ + alElz' it has been shown in [10] that the

dispersion relations as a plot of the eneréy flux versus the normalized mode
index for this fiber configuration behave as an N curve. This means that for a
single value of the field intensity there are three values. for the mode index.
For higher modes we may have more than one N curve depending on the
mode number. Also for this investigation the nonlinearity has been assumed

not to have a saturation limit i.e., Kerr-like nonlinearity.
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An important observation here is that the nodes of the solution which
represent the crossings of the field profile to the fiber axis can go beyond the
core of the waveguide. This is a unique characteristic of the nonlinear
waveguide and has no linear counterpart The technique of solution used in
[10] is based on solving Maxwell’s equations for the linear core in terms of
Bessel functions and finding the solution of the wave equation for the
nonlinear cladding using numerical methods. The boundary conditions are
matched at the core cladding interface. The investigation also covers the
case when the dielectric constant of the waveguide is smaller than or equal
to the linear cladding value. In the linear sense, waveguide modes do not
exist in such fiber configuration. In a linear waveguide, guidance takes place
only if the core refractive index is greater than the cladding. refractive index
which can fulfill the condition for total internal reflection. However, for a
nonlinear surrounding medium, waveguide modes exist only for values of
pow.er -greater thana cer’te;irn threshold. The main conclusion shows that a
cylindrical waveguide immersed in a medium with a nonlinear permittivity
has some important characteristics, in particular the multi-valued
dependence of optical power on effective index. This nonlinear waveguide
is used in the design of switches in optical communication devices, where the

light intensity is used to switch the fiber between two guiding states or

between a cutoff and a guiding state.
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The waveguide of linear core and nonlinear cladding has also been
studied by Akhmediev et al. in 1990 [11]. The dielectric function in [11] can
account for both saturable and nonsaturable nonlinearities. To the best of our
knowledge this is the first time a saturable dielectric is treated in optical fiber
beside the ordinary Kerr nonlinearity. Two solutions are obtained,
symmetrical and asymmetrical. For the asymmetrical solution the field
distributions have no axial symmetry. The asymmetrical solutions occur only

for values of effective index greater than a minimum value n . Below this

value only the symmetric solutions exist. Above n, the asymmetric solutions

branches from the symmetric ones.

For the fiber with linear core and nonlinear cladding studied in [7] the

dispersion relation is almost the same for the linear and the nonlinear states.
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CHAPTER 2

NONLINEAR MATERIAL IN OPTOELECTRONICS

2.1 INTRODUCTION

Many characteristics of extremely low-loss fibers, whose development
points towards the feasibility of long-distance wide-band transmission
systems, enhances the relevance of nonlinear phenomena in optical
waveguide propagation. These characteristics are the long interaction
length provided by the fiber itself, the small fiber diameter pertinent to
monomode operation and the existence of narrow-linewidth single frequency

lasers. In particular, the product of the fiber length L and the intensity

, associated with a core radius a and an input power P can become

(na”)
large enough, compared with nonlinear propagation in an unbounded

medium, to balance the intrinsically small nonlinearity of silica glass at

relatively low power.

The third order nonlinear susceptibility ™ is an important optical
property of material because of its contribution to numerous nonlinear optical

processes. Some of these processes are the self-focusing, self-defocusing,
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self-trapping and self-bending -of light. Degenerate four-wave mixing, and

phase conjugation are also results of the third order nonlinear susceptibility.
2.2 CHARACTERISTICS OF NONLINEAR MATERIALS

Nonlinear optical processes are usually described in terms of the

polarizat!on vector P which is related to the D and the E vectors by the

following equation:
D= anE +P (2.1)

The polarization can be formally expanded in a power series of the electric

field as ith component by:

P, = yE; + 2xy EE, + 4xyfk EE + ... (2.2)
where P, is the ith component of P and y, is the susceptibility.

For linear materials only the first order susceptibility ¥, is important.

High rank susceptibility terms are negligible. For this type of materials the

relative dielectric constant is represented by
g, =1+ L (2.3)

For nonlinear materials the higher order susceptibilities are not negligible






