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Chapter 1

Adaptive Filtering: Algorithms and

Structures

1.1 Introduction

Adaptive systems are playing a vital role in the development of modern telecommunications.

Also, adaptive systems proved to be extremely effective in achieving high efficiency, high

quality and high reliability of around-the-world ubiquitous telecommunication services.

The role of adaptive systems is wide spread covering almost all aspects of telecommu-

nication engineering, but perhaps most notable in the following context [12] of ensuring

high-quality signal transmission over unknown and time varying channels.

Interest in adaptive filters continues to grow as they begin to find practical real-time

applications in areas such as echo cancellation [11], channel equalisation [13], noise cancel-

lation [14]-[15] and many other adaptive signal processing applications. This is due mainly

to the recent advances in the very large-scale integration (VLSI) technology.

The key to successful adaptive signal processing is understanding the fundamental proper-

ties of adaptive algorithms. These properties are stability, speed of convergence, misadjuste-

ment errors, robustness to both additive noise and signal conditioning (spectral colouration),

numerical complexity, and round-off error analysis of adaptive algorithms. However, some of
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these properties are often in direct conflict with each other, since consistent fast converging

algorithms tend to be in general more complex and numerically sensitive. Also, the perfor-

mance of any algorithm with respect to any of these criteria is entirely dependent on the

choice of the adaptation update function, that is the cost function used in the minimisation

process. A compromise must be than reached among these conflicting factors to come up

with the appropriate algorithm for the concerned application.

After presenting, in Section 2, the common adaptive system configurations using adap-

tive filters, Finally, Section 3 will deal with a more explicit development of adaptive filters.

Performance evaluation of the resulting algorithms using the properties of the finite impulse

response (FIR) adaptive filter are also mentioned.

1.2 Applications of adaptive filters

Adaptive filtering has been successfully applied in such diverse fields as communications,

radar, sonar, and biomedical engineering. Although these applications are indeed quite

different in nature, nevertheless, they have one basic common feature: an input signal and

a desired response are used to compute the error, which is in turn used to control the

values of a set of adjustable filter coefficients. However, the main difference among the

various applications of adaptive filtering arises in the manner in which the desired response

is extracted.

In this context, we may classify an adaptive filter into one of the four following categories:

1.2.1 System identification

In this first application, depicted in Fig. 1.1, the adaptive filter is used to provide a linear

model that represents the best fit to the unknown system. Both the adaptive filter and the

unknown system are driven by the same input. The error estimate is used to update the

filter coefficients of the adaptive filter. After convergence, the adaptive filter output will

approximate the output of the unknown system in an optimum sense. Provided that the
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order of the adaptive filter matches that of the unknown system and the input, x(n), is broad

band (flat spectrum) this will be achieved by convergence of adaptive filter coefficients to

the same values as the unknown system.

The major practical use of this structure in telecommunications is for echo cancellation

[11], [16]-[17]. Typically, the input signal x(n) will be either speech or data.

1.2.2 Inverse modelling

In this second class of applications, the function of the adaptive filter is to provide an

inverse model that represents the best fit to the unknown system. Thus, at convergence,

the adaptive filter transfer function approximates the inverse of the transfer function of the

unknown system. As can be seen from Fig. 1.2, the desired response is a delayed version of

the input signal.

The primary use of inverse system modelling is for reducing the effects of intersymbol

interference (ISI) in digital receivers. This is achieved through the use of equalisation [13],

[18] techniques.

1.2.3 Prediction

In this structure, the function of the adaptive filter is to provide the best prediction of the

present value of the input signal from its previous values. The configuration shown in Fig.

1.3 is used for this purpose, where the desired signal, d(n), is the instantaneous value and

the input to the adaptive filter is a delayed version of the same signal.

This application is widely used in linear predictive coding (LPC) of speech [19]-[20] and

in adaptive differential pulse-code modulation (DPCM) [21]. Another approach to prediction

is given in [22].
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Figure 1.1: Direct system modelling configuration of an adaptive filter.
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Figure 1.2: Inverse system modelling configuration of an adaptive filter.
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Figure 1.3: Configuration of an adaptive filter as a predictor.
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1.2.4 Noise cancellation

In this final class of applications, the adaptive filter is used to cancel unknown interference

contained in a primary signal, as Fig. 1.4 depicts it. The primary signal serves as the desired

response of the adaptive filter. This type of application is used in adaptive noise cancellation

[14]-[15], and adaptive beamforming or adaptive array processing [23].

The principle operation of the adaptive filter in all the four cases is mainly the same,

and for the purposes of further development only the case of system identification will be

considered. Also, interest in this configuration is related to the type of application we are

dealing with in this thesis, namely echo cancellation.

ΣAdaptive
    filter

x(n)
e(n)

y(n)

+

-

Primary signal

d(n)

Figure 1.4: Configuration of an adaptive filter as a noise canceller.

1.3 Adaptive filters

Adaptive filters are an important part of signal processing. They are generally defined as

filters whose characteristics can be modified to achieve desired objectives and accomplish this

modification or adaptation automatically without user intervention. Due to the uncertainty

about the input signal characteristics, the designer then uses an adaptive filter which can

learn the signal characteristics when first turned on and can later track changes in these

characteristics. Adaptive algorithms are responsible for the learning process.

A large number of algorithms for adaptive filters have been prosed. Indeed, adaptive
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filtering is an example of an optimisation problem and optimisation techniques form an

important part of mathematics [24]-[26]. The additional constraint in adaptive filtering is

that many of the applications require this optimisation to be performed in real time and so

the complexity of the computations must be kept to a minimum.

In what is remaining of this section, different cost functions for adaptive filters are defined

with some of the possible structures used in their implementation, and the expression for the

optimum FIR filter in the mean square error (MSE) sense is given in terms of autocorrelation

and crosscorrelation functions [27].

1.3.1 Cost functions

Before proceeding to discuss any adaptive algorithm, it is necessary to discuss the perfor-

mance measure (cost function) which is used in adaptive filtering. The adaptive filter has

the general form shown in Fig. 1.5, where the FIR filter of order N is considered here. The

filter output y(n) is given by

y(n) =
N−1∑

i=0

ci(n)x(n − i)

= cT (n)x(n), (1.1)

where x(n) and c(n) are, respectively, the vector of the last N samples from the time series

x(n) and the filter coefficients at sample n, defined as follows:

xT (n) = [x(n), x(n − 1), · · · , x(n − N + 1)]. (1.2)

and

cT (n) = [c0(n), c1(n), · · · , cN−1(n)], (1.3)

where T denotes transpose.

In general, adaptive techniques have been classified under two main categories. In one

category, the cost function to be optimised in a running sum of squared errors is given by:

J(n) =

n∑

j=0

e2(j), (1.4)
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Figure 1.5: General form of an adaptive filter.

where the error e(n) is defined to be the difference value between the desired response d(n)

and the output of the adaptive filter y(n), that is,

e(n) = d(n) − y(n). (1.5)

The approach, defined by (1.4), is based on the method of least squares [2], [28]-[29], which

contains the whole class of recursive least squares (RLS) algorithms [7], [16], [30]-[32].

In the other category, the cost function to be optimised is a statistical measure of the

squared error, known as the mean squared-error (MSE) [33]. This cost function is given by

J(n) = E[e2(n)], (1.6)

where E[ ] denotes statistical expectation. This category contains the whole class of gradient

algorithms, which includes the least mean-squared (LMS) algorithm [1], [7], [16].

The two procedures described above for deriving adaptive algorithms differ in some re-

spect on how their respective cost function is chosen. The theory for the Wiener filter is

based on statistical concepts, while it is based on the use of time averages for the method

of least squares. Also, least squares techniques and stochastic techniques have a number

of differences in the way that they perform [34]. Among these differences are on the one

hand the much longer time taken for a stochastic gradient algorithm to converge close to

the optimum solution and on the other hand the much higher computational complexity in
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least squares algorithms. Nevertheless, the less computational complexity in the stochastic

gradient methods make them much more attractive than their least squares counterparts.

Recently, other minimisation criteria have emerged, in which adaptive structures are

derived from minimisation of a class of functions of the form [8]:

Jk(n) = E[e2k(n)]; k ≥ 1, (1.7)

where k is an integer constant. It is seen from (1.7) that when k = 1, the usual MSE

criterion is obtained, while the mean fourth-error (MFE) results when k = 2.

The cost functions, (1.4) and (1.6), are both convex with a unique minimum point.

Accordingly, their use yields a unique solution for the coefficient vector of the FIR filter.

Also, the minimisation function, (1.7), is a convex function, and therefore has no local

minima. Hence, the use of a gradient based adaptation scheme for the convergence to the

minimum can be applied.

Finally, before stating the possible linear structures used in implementing adaptive filters,

it is worth mentioning the properties of the cost functions. All the functions presented in

this section and others not mentioned in this work should be positive and monotonically

increasing [35] for their corresponding algorithms to perform correctly.

1.3.2 Structures

A number of different linear structures for adaptive systems have been proposed, which may

be subdivided into finite and infinite impulse structures. For the finite impulse response [36]-

[38], the transfer function is realised by zeros only, as all the poles of the filter are located at

the origin. In the case of the infinite impulse response (IIR) [16], [39] filter, however, both

poles and zeros are used to realise the transfer function. Examples of the FIR filter are the

linear transversal filter depicted in Fig. 1.6, and the lattice filter [40]-[42]. The structure of

the IIR filter is shown in Fig. 1.7. However, difficulties associated with developing adaptive

techniques for IIR filter are considerable, because the filter is not unconditionally stable, as it

has both poles and zeros in its transfer function. The danger is that the adaptive algorithm

will choose a set of coefficients which may place poles outside the unit circle in the z-plane
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and so provoke an unstable response. These difficulties, hence, make the IIR structure less

attractive than the well established FIR one.

The work of this course is, therefore, concerned with the linear transversal filter structure

and the emphasis is on developing highly efficient algorithms for this well understood and

often used structure.

1.3.3 The FIR adaptive filter

Assuming that the input sequence {x(n)} and the desired sequence {d(n)} are wide sense

stationary, the mean-square-error function, equation (1.6), can be more conveniently ex-

pressed in terms of the input autocorrelation matrix, R, and the crosscorrelation vector, p,

between the desired response and the input components, as follows:

J(n) = E[d2(n)] − 2cT (n)p + cT (n)Rc(n), (1.8)

where

R = E[x(n)xT (n)], (1.9)

and

p = E[x(n)d(n)]. (1.10)

It is clear from expression (1.8) that the MSE is precisely a quadratic function of the com-

ponents of the tap coefficients. Thus, the shape associated with this MSE is hyperboloid.

In general, for the linear transversal structure, the surface will be quadratic, when the

MSE is used, with a single global minimum. The goal of an adaptive algorithm is to set the

filter coefficients so as to obtain an operating point at this minimum, where the filter gives

optimum performance.

The point at the bottom of the performance surface corresponds to the optimal tap

coefficients, copt, or minimum MSE. The gradient method is used to cause the tap coefficients
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vector to seek the minimum of the performance surface. It is defined as

∇E[e2(n)] =
∂J(n)

∂c(n)

= [
∂J(n)

∂c0(n)
,
∂J(n)

∂c1(n)
, · · · ,

∂J(n)

∂cN−1(n)
]T

= −2E[e(n)x(n)]

= 2Rc(n) − 2p. (1.11)

To obtain the minimum MSE, the tap-coefficients vector c(n) is set to its optimal value,

copt, where the gradient is zero, that is,

∇E[e2(n)] = Rcopt − p = 0. (1.12)

Under this condition, the optimum value is given by:

copt = R−1p, (1.13)

where this is obtained under the assumption that the autocorrelation matrix R of the input

signal has no nulls in its power spectral density, that is positive definite and hence non

singular. Properties of the the autocorrelation matrix R of the input signal can be found in

[7]. The minimum MSE , Jmin, is hence obtained by substitution of (1.13) in (1.8), that is,

Jmin = E[d2(n)] − cT
optp. (1.14)

The solution for copt involves inverting the input autocorrelation matrix R, hence, re-

quiring precise knowledge of the second order statistics of the data, i.e., the autocorrelation

matrix and the crosscorrelation vector. Unfortunately, it is the data sequences rather than

their second order statistics that are available in practice. Alternatively, an iterative proce-

dure may be used to determine copt. This is the function of an adaptive FIR filter algorithm

which has to find the optimum filter from available data rather than from the second statis-

tics of the data [43]. Thus, an adaptive FIR filter can be defined as an algorithm which

operates on the sequences {x(n)} and {d(n)} to form a time-varying impulse response c(n)

which converges in the mean to copt as the number of iterations becomes very large, that is:

lim
n→∞

E[c(n)] = copt. (1.15)
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1.4 Summary

This chapter concentrated on basic ideas for which both adaptive filters and adaptive algo-

rithms are made up. The issue of adaptive filtering is still and will remain a very active field

of research for some considerable time. This is mainly due to the advances in the computing

facilities that were not previously available and to the need for such algorithms.

The wide spread use of the least-demanding computing algorithm, i.e., the LMS al-

gorithm, is with no doubt due to its both simplicity and relative performance. The RLS

algorithm, for example, gives very fast convergence to the algorithm at the expense of very

heavy computational loads, irrespective of the input signal statistics. However, things change

when the input signal is white noise, the convergence properties of the LMS algorithm, under

certain circumstances, becomes comparable to or the same as those of the RLS algorithm.

Both of these algorithms, and in general all algorithms, operate under different minimi-

sation functions, which are the main reason in their different performances.
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