
Chapter 1

Iterative Forward-Backward Kalman Filtering for Data

Recovery in (Multiuser) OFDM Communications1

Tareq Y. Al-Naffouri, Muhammad S. Sohail and Ahmed A. Quadeer

King Fahd University of Petroleum & Minerals

Saudi Arabia

1. Introduction

The current era of connectivity and information transfer demands high data rates from broadband wireless systems. The

main problem faced by such high data rate systems is multipath fading as it causes inter symbol interference (ISI). Thus,

there is a need for a technique that avoids ISI while still providing high speed data. Orthogonal Frequency Division

Multiplexing (OFDM) emerged as a technique that combines the advantages of high achievable data rates, relatively easy

implementation, high spectral efficiency and robustness to multipath fading. This is reflected by many standards that

considered and adopted OFDM including digital audio and video broadcasting (DAB and DVB), WIMAX (Worldwide

Inter-operability for Microwave Access), high speed modems over digital subscriber lines, and local area wireless broad-

band standards such as the HIPERLAN/2 and IEEE 802.11a (Stuber et al., 2004).

In a wireless communication system, data is sent over a channel. This channel is time variant and undergoes fading.

The exact state of the channel is unknown at the receiver. The transmitted signal is received at the receiver convolved with

the channel and corrupted with noise. The main interest at the receiver is to recover the transmitted data. If we consider

that the channel state information is known at the receiver, we can faithfully extract the transmitted data from the received

signal with this knowledge (through equalization). In practice however, we do not have prior knowledge of the channel

state information and hence we have to employ some estimation technique to obtain an estimate of the channel. Channel

estimation is thus an important step in receiver design.

We will start this chapter by reviewing the various approaches to channel estimation available in literature. We will

then present an iterative channel estimation technique based on the Forward-Backward Kalman filter for simple OFDM

systems and later extend the concept for multi-access OFDM and Multi Input Multi Output (MIMO) OFDM systems.

1This work was partly supported by King Abdul Aziz City for Science & Technology, Project No. AR-27-98 and partly by a Junior
Faculty Project JF060003, King Fahd University of Petroleum and Minerals, Saudi Arabia.
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2. Various Approaches to Channel Estimation

An OFDM receiver needs to be able to accurately estimate the transmitted data and for that, it needs accurate channel

state information. For time variant channel, an additional problem is that channel state keeps changing. One way to deal

with such channels is to periodically send a training (known) sequence which can be used at the receiver to estimate the

channel. However this would severely strain the bandwidth efficiency of the system. An alternative approach is to use

a priori constraints on the communication system to reduce the training overhead. The most popular of these constraints

are summarized in Table 1.1 together with the works that employed them. All channel estimation techniques use all or a

subset of these constraints. For example, to reduce the training overhead, we could assume that the channel is sparse or

that it exhibits strong time correlation from one instant into another. Similarly, we could use some a priori information

about the transmitted data such as the fact that it is drawn from some finite alphabet (see Table 1.1).

TYPE CONSTRAINTS REFERENCE

(Al-Naffouri et al., 2001);
Finite alphabet constraint (Shengli and Giannakis, 2001);

(Al-Naffouri, 2007); (Yang and Ser, 2004)
(Al-Rawi et al., 2003); (Zhang and Chen, 2004);

Code (Petropulu et al., 2004);
(Gao and Nallanathan, 2007)
(Al-Naffouri, 2007); (Bölcskei et al., 2002);

Transmit precoding (Al-Rawi et al., 2003); (Kim and Eo, 2006);
(e.g., cyclic prefix, zero-padding, virtual carriers) (Muquet et al., 2000); (Shin et al., 2007);

(Kunji et al., 2006)

Data
Constraints

(Edfors et al., 1998); (Negi and Cioffi, 1998);
Pilots (Biguesh and Gershman, 2004);

(Li et al., 1998); (Minn and Al-Dhahir, 2006)
Finite delay spread (Bölcskei et al., 2002); (Negi and Cioffi, 1998)
Sparsity (Yang et al., 2001); (Kang et al., 1999)

(Al-Naffouri, 2007); (Edfors et al., 1998);
Frequency correlation (Al-Rawi et al., 2003); (Chang and Su, 2004);

(Cui and Tellambura, 2006)
(Muquet et al., 2000); (Al-Naffouri et al., 2004);

Time correlation (Necker and Stuber, 2004);
(Zhang and Chen, 2004); (Al-Naffouri, 2007)

Channel
Constraints

Uncertainty information (Sayed, 2001); (Li et al., 1998)

Table 1.1: Constraints used for channel estimation

2.1. Iterative Receivers for Channel Estimation & Data Recovery

There are several methods for channel estimation. However, the state of the art receiver is iterative in nature in that it

iterates between finding a channel estimate which is used for data detection and between finding a data estimate which is

in turn used to enhance channel estimation. Training data kick starts the iterative process by providing an initial channel

estimate. Moreover, the a priori information that we have about the channel and data enhance the channel estimation and

data detection steps which in turn reduces the required transmission overhead (Al-Naffouri et al., 2002); (Aldana et al.,

2003); (Cozzo and Hughes, 2003).

In this chapter, we use the Expectation-Maximization (EM) algorithm to design an iterative receiver for the estimation

and equalization of time variant channels. We will show that the receiver boils down to a forward-backward Kalman filter.

We will discuss the use of Kalman filter for channel and data recovery in single user as well as multiuser OFDM systems.

To setup the stage, we introduce our notation in the following section followed by the system model.
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3. Notation

In this chapter, scalars are denoted by small-case letters (e.g., y), vectors by small-case boldface letters (e.g., y), and matrices

by uppercase boldface letters (e.g., X). For vectors in frequency domain, calligraphic notation (e.g. Y) is used. An estimate

of a variable is indicated by a hat on that variable (e.g., ĥ is an estimate of h). Also, conjugate transpose is represented

by ∗, Kronecker product by ⊗, size N × N identity matrix by IN , and the all zero M × N matrix by 0M×N . For a vector

a, diag(a) represents a diagonal matrix with the elements of a on its diagonal. Finally, we use hT
0 to denote the sequence

h0, h1, ..., hT .

4. System Model

Consider an OFDM system where a sequence of T + 1 symbols X 0, X 1, · · · , X T , each of length N , are to be transmitted.

The data bits to be transmitted are first passed through a convolutional encoder, punctured and interleaved. The resulting

bit sequence is mapped to QAM symbols using Gray code. The OFDM symbol is then constructed by inserting these QAM

symbols at data positions and pilot symbols at training positions. Here we consider comb type pilots as they are more

robust in fading channels than block type pilots (Nee and Prasad, 2000). Each symbol X i undergoes an IDFT operation

to produce the time domain symbol xi =
√

NQ∗X i where Q is the N × N DFT matrix. A length P cyclic prefix xi is

appended to the symbol xi to counter the effect of inter symbol interference. This transforms the complex equalization

problem into parallel single tap equalizers. The transmitter then transmits the resulting super symbol xi of length N + P

as shown in figure (1.1)

Figure 1.1: Simple OFDM System

We consider a block fading channel model, meaning the channel hi (length < P +1) remains unchanged for each super

symbol but varies from one super symbol to the next according to a state space model

hi+1 = Fhi + Gui h0 ∼ N (0, Rn) (1)

where ho ∼ N (0, Π0), and uo ∼ N (0, σ2
u). The matrices F and G are square matrices of size P × P and are a function of

Doppler spread (time correlation), power delay profile (frequency correlation) and the transmit filter. These matrices are

assumed to be known at the receiver and are given as

F =




α(0)

. . .

α(P )


 , G =




√
1− α2(0)

. . .
√

(1− α2(P ))e−βP


 (2)

where α(p) is related to the Doppler frequency fD(p) by α(p) = J0(2πfDT (p)). The variable β corresponds to the exponent

of the channel decay profile. The constraints captured by the state space model (1) include frequency correlation, time

correlation, finite delay spread, and sparsity.
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The passage of x̄i symbols through the channel h produces the received sequence ȳi at the receiver. The received

packet of length N + P is split into a length N packet yi and a length P prefix y
i
. The prefix absorbs all the inter symbol

interference between x̄(i−1) and x̄i and is hence discarded. The time domain relation of the input/output equation can

thus be expressed as

yi = xi ~ hi + ni (3)

where ~ represents circular convolution. This relation takes a more transparent form in the frequency domain as

Yi = diag(X i)Hi + N i (4)

= diag(X i)QPhi + N i (5)

where QP is the FFT matrix comprised of the first P columns of Q, Hi is related to hi by the relation

Hi = Q


 hi

0


 = QP hi

and N i is additive white Gaussian noise N (0, σ2
nI). For ease of notation, let us define Xi as diag(X i)QP. Thus we can

rewrite equation (5) as

Yi = Xihi + N i (6)

This equation gives the input/output relationship of the OFDM system. Now the OFDM symbol Xi consists of both data

and pilots. It will be useful for our discussion in the next sections to define a pilot/output relation. Let Ip = {i1, i2, · · · , iLp}
be the set of pilot indices within the OFDM symbol known a priori at the receiver and let XIp be the matrix pruned of rows

that do not belong to Ip, i.e. XIp is comprised of the pilot rows only of X . The pilot/output relationship will thus be a

pruned version of (6) and is given as

Yi,Ip = Xi,Iphi + N i,Ip
(7)

5. Channel Estimation

In the following, we consider the channel estimation problem when the data is (i) completely known and when it is (ii)

partially known (i.e. some training data is available).

5.1. Data Completely Known

Our goal here is to estimate hi. We start by performing channel estimation using only one OFDM symbol. We start with

the assumption that the transmitted OFDM symbols Xi are known completely at the receiver. This enables us to use

input/output equation (6) to obtain the channel estimate ĥi by maximizing the following log likelihood function

ĥ
MAP

i = arg max
hi

{
ln p (Yi|Xi, hi) + ln p (hi)

}
(8)
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where p (z) stands for probability density function of z. As the noise is white gaussian, the maximization reduces to

ĥ
MAP

i = arg min
hi

{
||Yi −Xihi||2R−1

N
+ ||hi||2Π−1

}
(9)

= ΠX∗
i [RN + XiΠX∗

i ]
−1 Yi (10)

where ||a||2A , a∗Aa The Maximum A Posteriori (MAP) solution (10) makes use of the information at the ith symbol

Yi only to estimate hi. This is clearly suboptimal as hi is correlated with hj for j = 0, 1, ..., T and hence it is correlated

with all the output symbols Y0, Y1, ..., YT (and not just Yi). To make full use of this correlation, we maximize the log

likelihood function of the whole sequence hT
0 = h0, h1, ..., hT given the whole output sequence YT

0 , i.e. we maximize the

MAP estimate of channel tap sequence hT
0 by maximizing the following log likelihood function

L = ln p (YT
0 |XT

0 , hT
0 ) + ln p (hT

0 ) (11)

It can be shown that since the noise and channel IR sequence are Gaussian, the likelihood function takes the quadratic form

(Al-Naffouri, 2007)

L =

T∑
i=0

ln p (Yi|Xi, hi) +

T∑
i=1

ln p (hi|hi−1) + ln p (h0) (12)

= −
T∑

i=0

||Yi −Xihi||2R−1
N
−

T∑
i=1

||hi − Fhi−1||21
σ2

u
GG∗ − ||h0||2∏−1

0
(13)

up to some additive constant.

This can be formulated as a least square problem in the sequence hT
0 . Alternatively, since the MAP estimate coincide

with the Minimum Mean Square Error (MMSE) estimate for Gaussian data, we can obtain the sequence hT
0 by applying

the Forward Backward (FB) Kalman filter to the state space model

hi+1 = Fhi + Gui (14)

Yi = Xihi + N i (15)

The Forward backward Kalman filter which provides the MAP estimate (and also the MMSE estimate) is described by the

following set of equations (Kailath et al., 2000):

Forward run: Starting from the initial conditions P 0|−1 = Π0 and ĥ0|−1 = 0 and for i = 1, . . . , T, calculate

Re,i = σ2
nIN+P + XiP i|i−1X

∗
i (16)

Kf,i = P i|i−1X
∗
i R−1

e,i (17)

ĥi|i = (IN+P −Kf,iXi) ĥi|i−1 + Kf,iYi (18)

ĥi+1|i = F ĥi|i (19)

P i+1|i = F
(
P i|i−1 −Kf,iRe,iK

∗
f,i

)
F ∗ +

1

σ2
n

GαG∗
α (20)

Backward run: Starting from λT+1|T = 0 and for i = T, T − 1, . . . , 0, calculate

λi|T =
(
IP+N −X∗

i K∗
f,i

)
F ∗λi+1|T + XiR

−1
e,i

(
Yi −Xiĥi|i−1

)
(21)

ĥi|T = ĥi|i−1 + P i|i−1λi|T (22)
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where ĥi|T is the desired estimate of the channel taps.

5.2. Data Partially Known

When only the training part of the data is known, we estimate the channel from the state space model

hi+1 = Fhi + Gui (23)

Yi,Ip = Xi,Iphi + N i,Ip (24)

This dynamical model is different from the model (14) - (15) through the input equation (specifically Xi is replaced by

Xi,Ip and Yi by Yi,Ip ). Thus the training based MAP estimate of the channel sequence hT
0 is obtained by applying the

Forward Backward Kalman filter to the dynamical model (14) - (15), i.e. by applying (16) - (22) with the substitution

Xi → Xi,Ip and Yi → Yi,Ip .

5.3. Iterative Channel Estimation

Using a sufficiently large number of pilots would yield a good estimate of channel but it will consume the valuable band-

width of the system. For this reason, it is desirable to keep the number of pilots in the system to a minimum. The data,

which constitutes the larger part of the received symbol, is not being used and hence we are not fully using the constraints

on the data. This provides the motivation for using some data aided technique. Since the data is unknown at the receiver,

we make use of the expectation maximization (EM) algorithm. The EM algorithm is used when some of the data needed

for the estimation process is unavailable. To motivate the EM algorithm, consider the MAP estimate of the channel hi de-

scribed by (9). Since the data Xi is unknown, we can not minimize (9) for hi. To go around this, we minimize (9) averaged

over the data Xi i.e.

ĥ
(j)

i = arg min
hi

{
E

Xi|Yi,h
(j−1)
i

{
ln p (Yi|Xi, hi) + ln p (hi)

}}
(25)

As indicated in (25), this is an iterative procedure as it gives the estimate of hi at the jth iteration by utilizing the estimate

at the (j − 1)th iteration. Thus, the expectation with respect to Xi is taken given the output data Yi and given the channel

estimate at the (j − 1)th step, ĥ
(j−1)

i . By evaluating the expectation and completing the squares, we can rewrite (25) as

ĥ
(j)

i = arg min
hi

{
||Yi − E[Xi]hi||21

σ2
n

+ ||hi||21
σ2

n
Cov[X∗i ] + ||hi||2∏−1

}
(26)

where E[Xi] is the expected value of Xi and Cov[X∗
i ] is its covariance. Combining the first two terms of the above

equation, we can get a concise form of the log likelihood function as

ĥ
(j)

i = arg min
hi





∥∥∥∥∥∥


 Yi

0P×1


−


 E[Xi]

Cov[X∗
i ]

1/2


 hi

∥∥∥∥∥∥

2

1
σ2

n

+ ||hi||2∏−1





(27)

Comparing the quadratic form (9) for the known data case with the form (27) for the unknown (or partially known) data

case, we note that to move from the former to the latter, we need to perform the substitution

Xi →

 E[Xi]

Cov[X∗
i ]

1/2


 and Yi →


 Yi

0P×1



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This step is the maximization step of the EM algorithm. It remains to perform the expectation step which will be considered

below.

As Xi = diag(X i)QP , we can express the mean and the covariance of Xi in terms of X i as

E[Xi|Yi, ĥ
(j−1)
i ] = diag(E[X i|Yi, ĥ

(j−1)
i ])QP (28)

Cov[X∗
i |Yi, Hi] = Q∗

P Cov[X ∗
i |Yi, Hi]QP (29)

This decoupled form enables us to calculate the above expectations on an element by element basis Xi(l) l = 1, 2, . . . , N .

For the case when Xi(l) is drawn from a finite alphabet set A = {A1, A2, . . . , A|A|} with equal probability, we can show

that

f(Xi(l)|Yi(l),Hi(l)) =
e
− |Y(l)−H(l)Aj |2

σ2

∑M
j=1 e

− |Y(l)−H(l)Aj |2
σ2

(30)

using Bayes rule. This result leads to the expectations

E[Xi(l)|Yi(l),Hi(l)] =

∑M
j=1 Aje

− |Yi(l)−Hi(l)Aj |2
σ2

∑M
j=1 e

− |Yi(l)−Hi(l)Aj |2
σ2

(31)

E[|Xi(l)|2|Yi(l),Hi(l)] =

∑M
j=1 |Aj |2e−

|Yi(l)−Hi(l)Aj |2
σ2

∑M
j=1 e

− |Yi(l)−Hi(l)Aj |2
σ2

(32)

which can in turn be used to evaluate the expectation and covariance of Xi.

The initial estimate ĥ
(0)

i is obtained using pilots. From this channel estimate, we make an estimate of data and use (26)

to estimate the channel again. This process is iterated a number of times to get the final estimate ĥi.

6. The EM-based Forward Backward Kalman Filter

The algorithm above performs iterative channel estimation (of hi) and data detection (of X i) using the ith OFDM sym-

bol Yi only. However, as we mentioned earlier, this is suboptimal as the channel hi is correlated with the symbols Y0,

Y1, ..., YT . Thus, in the partially known data case, we can design an EM based FB Kalman filter as follows

Maximization Step: The maximization step obtains estimate of hi at the jth iteration by applying the FB Kalman to the

state space model

hi+1 = Fhi + Gui (33)

 Yi

0P×1


 =


 E[Xi]

Cov[X∗
i ]

1/2


 hi +


 N i

ni


 (34)

i.e. by applying the FB Kalman (16) - (22) with the change of variables

Xi →

 E[Xi]

Cov[X∗
i ]

1/2


 and Yi →


 Yi

0P×1




Expectation Step: The expectation step in the FB Kalman case is exactly the same as described by equations (28) - (32).

Initialization Step: The initial channel estimate ĥ
(0)

i is obtained by applying the FB Kalman filter to the dynamical model

(23) - (24).
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There are several possible implementations of incorporating the EM algorithm in the FB Kalman filter. For time cor-

related channels, there are two dimensions we can iterate along (i) between channel estimation & data detection or (ii)

against time. We get different receiver structures depending upon the scheduling of these iterations.

6.1. Cyclic FB Kalman

If we iterate between channel estimation & data detection after the entire forward-backward run of the Kalman, the filter

formed is called a cyclic FB Kalman. The pilot based estimate serves as the initial estimate to jump start the data aided

version. The channel estimate is then given by the FB Kalman. This estimate is again used to refine the data and the

entire process is iterated. The iterations process the OFDM symbols in a circular manner motivating the name of this filter

structure as shown in figure 1.2.

Figure 1.2: Cyclic FB Kalman

Figure 1.3: Helix FB Kalman

6.2. Helix FB Kalman

If we structure the filter to iterate between channel estimation and data detection at each step of the Kalman, the filter

formed is called a helix FB Kalman. Here, the initial estimate is again provided by the pilots. Now, at each step of the

Kalman, the filter iterates several times between channel estimation and data detection at each OFDM symbol, using one

to enhance the other and so on, before moving to the next symbol using the Kalman filter. Figure 1.3 shows that the

iterations trace a helix which explains the name we chose for this filter.
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6.3. Forward only Kalman

Latency and memory is an issue with the FB Kalman filter as the receiver needs all the symbols within an OFDM block to

estimate the channel. By implementing the forward part of the Kalman filter only, we can get rid of the storage and latency

issues at the cost of decreased performance.

7. The FB-Kalman based Receivers

The FB Kalman filter described in the previous section can be applied in several other receiver scenarios. To do so, we need

to provide the following

1. A dynamical equation that describes the evolution of the channel impulse response (similar to (1)). The FB Kalman

can be applied then to obtain the iterative channel estimate (maximization step).

2. Input/output equation for data recovery. This is used to evaluate the first and second moments of the data (expec-

tation step).

3. A dynamical equation that can be used for initial channel estimation via the FB Kalman filter.

In the following, we shall apply this procedure to two communication scenarios namely channel estimation in mul-

tiuser OFDM and channel estimation in MIMO OFDM.

8. Channel Estimation in Multi-Access OFDM Systems

In a multi-access OFDM system, the available bandwidth of the system is shared between a number of users. Each user

thus has access to only a specific portion of the OFDM spectrum. This has some important ramifications as far as channel

estimation is concerned. Specifically, each user is only interested in the estimate of the particular band in which it is oper-

ating. In time domain based channel estimation techniques the user is required to estimate the entire spectrum and hence

this proves to be computationally expansive in the multi-user case. As such, frequency domain channel estimation meth-

ods for the multi-access scenario would make more sense as this would allow each user to estimate the part of spectrum in

which it is operating and not the entire spectrum.

The only problem with frequency domain channel estimation is the increased number of parameters to be estimated in

this case (from P to N , where P is the number of time domain channel taps and N is the number of frequency bins used).

As such, we can use some parameter reduction model to reduce the number of parameters to be estimated.

8.1. A Parameter Reduction Approach

Let k users be operating in a multi-access OFDM system. The frequency response of the entire spectrum is of length N .

For simplicity, we will assume that all users share the bandwidth equally. Each user thus operates in a band (or section) of

length Lf = dN
k
e. Let H(j)

i be the jth section of the frequency response, then from (1), the input/output equation of the

jth user is given by

Y(j)

i
= diag(X (j)

i )H(j)
i + N (j)

i (35)

where Y(j)
i

, X (j)
i , H(j)

i and N (j)
i are the jth sections of Yi, X i, Hi and N i, respectively. We will suppress the dependence

on the user index j and time index i for notational convenience. Denoting the pilot locations by the subscript I
(j)
p , we can

write the pilot/output equation as

Y
Ip

= diag(X Ip
)HIp

+ N Ip
(36)
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There are not enough pilots to estimate H. So, we resort to model reduction starting from the autocorrelation function of

H, RH. The eigenvalue decomposition of RH is given by

RH =

Lf∑

l=1

λlvlv
T
l (37)

where λ1 ≥ λ2 . . . ≥ λLf are the (ordered) eigenvalues of RH and v1, . . . ,vLf are the corresponding eigenvectors. Using

this decomposition, H an be represented as

H =

Lf∑

l=1

αlvl (38)

where α = [α1, α2, . . . , αLf ]T is the parameter vector to be estimated, with zero mean and autocorrelation matrix Λ =

diag(λ1, λ2, . . . , λLf ). Using (37) and (38), we can represent H in terms of its dominant eigenvalues and treat the insignifi-

cant eigenvalues as modeling noise, i.e.

H = V dαd + V nαn (39)

Upon substituting (39) in (35), we get

Y = diag(X )V dαd + N + diag(X )V nαn (40)

= Xdαd + N ′
(41)

where Xd = diag(X )V d and N ′
= N + Xnαn with Xn = diag(X )V n. The noise N ′ includes both the modeling noise

and the additive Gaussian noise. We consider N ′ to be zero mean white Gaussian noise with autocorrelation

RN ′ = RN + diag(X )V ndiag(λn)V ∗
ndiag(X )∗ (42)

Based on (41) we can construct a pilot/output equation similar to (36), as

Y
Ip

= Xd,Ip
αd + N ′

Ip
(43)

Equation (41) is the equation we need for data recovery. Equation (43) can be used for initial channel estimation (See (Al-

Naffouri and Sohail, 2008) for further details). All that is needed now is to develop a dynamical model for the interpolation

parameter.

8.2. Developing a Frequency Domain Time-Variant Model

In this subsection, we develop a state space model for the parameter αd. To this end, let us consider the channel model of

(1) and assume for simplicity that the diagonal matrices F and G are actually scalar multiples of the identity, i.e.

F = fI G =
√

1− f2I

where f is a function of Doppler frequency (see (Al-Naffouri, 2007)). Now as Hi is just the channel response hi in frequency

domain (Hi = QP hi), the jth section of Hi(i.e. H(j)
i ) is related to hi by

H(j)
i = Q

(j)
P hi (44)
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where Q
(j)
P is the jth section of QP . Replacing H(j)

i in (44) by its representation, we get a relation between the time domain

channel response and the dominant parameters αd as

V dαd,i = Q
(j)
P hi (45)

αd,i = V +
d Q

(j)
P hi (46)

where V +
d is the pseudo inverse of V d. Combining (1) and (46) yields a dynamical recursion for αd

αd,i+1 = F ααd,i + Gαui (47)

where F α = fI and Gα =
√

1− f2V +
d Q

(j)
P and where

E[αd,0α
∗
d,0] = Λd (48)

here we suppress the dependence of Gα and αd on j for notational convenience.

We are now ready to implement our FB Kalman based receiver, which consists of an initial channel estimation step and

an iterative channel estimation step.

8.3. Initial (Pilot-Based) Channel Estimation

In multi-access OFDM, the initial estimate is given by applying the FB Kalman filter (16) - (22) to the following state space

model:

Y
Ip,i

= Xd,Ip,iαd,i + N ′
Ip,i (49)

αd,i+1 = F ααd,i + Gαui (50)

8.4. Iterative (Data-Aided) Channel Estimation

The iterative channel estimation step is obtained by applying FB Kalman to the state space model

Y
i

=


 E[Xd,i]

Cov[X∗
d,i]

1
2


 αi,d +


 N ′

i

0


 (51)

αd,i+1 = F ααd,i + Gαui (52)

The data expectations in (51) are obtained from the input/output equation (41). Consequently, the FB Kalman is applied to

the above set. As mentioned in Section 5, the FB Kalman can be implemented as Cyclic Kalman, Helix Kalman or forward

only Kalman.

Figure 1.4 compares the Bit Error Rate (BER) performance of three implementations of Kalman filter with the simple

EM based least square estimation method. We consider an OFDM system that transmits 6 symbols with 64 carriers and

a cyclic prefix of length P = 15 each with a time variation of f = 0.9 . The data bits are mapped to 16 QAM through

Gray coding. The OFDM symbol serves 4 users each occupying 16 frequency bins. In addition, the OFDM symbol carries

16 pilots equally divided between the users. The channel impulse response consists of 15 complex taps (the maximum
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length possible). It has an exponential delay profile E[|h0(k)|2] = e−0.2k and remains fixed over any OFDM symbol. As

expected, the estimate improves when we use time correlation information (by using a Kalman filter). Figure 1.4 is plotted

for the uncoded case. Since we are relying on the data to improve the channel estimate, an outer code can improve the

data quality and hence the quality of the channel estimate. Figure 1.6 shows the advantage of using coding (1/2 rate

convolutional code) during the iterative process over the performance of iterative process that only makes use of the code

to correct the data at the last step of the algorithm.
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Figure 1.4: Comparison of various uncoded Kalman implementations.
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Figure 1.5: Comparison of Kalman implementations using code.

9. Channel Estimation in MIMO OFDM Systems

As wireless communication is becoming more and more integrated in everyday life, service operators are offering new and

advanced features like video streaming and broadband connections. These services demand high spectral performance.

By using Multi Input Multi Output (MIMO) OFDM techniques, we can increase the spectral efficiency and throughput of
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wireless systems. As we have seen so far, the problem of channel estimation in a wireless system is a challenging one. In

the case of MIMO OFDM systems, it becomes compounded by the fact that transmitters and receivers employ multiple

antennas which substantially increase the number of parameters to be estimated. In this section, we will extend the FB

Kalman receiver to a Space Time Block Coded (STBC) MIMO OFDM system.

9.1. MIMO Channel Model

We start by defining the MIMO channel model. Thus consider a MIMO system with Tx transmission antennas and Rx

receiver antennas. The time domain input/output relationship for a general MIMO system can be described by

y(m) =

P∑
p=0

H(p)x(m− p) (53)

where H(p) is the Rx × Tx MIMO impulse response at tap p and where m represents the sample time index. The effect

of the transmit filter and transmit and receive correlation are incorporated in H(p) making it correlated across space and

taps. For simplicity, H(p) is assumed to be iid. Again, a block fading channel model is considered where the changes from

the current block (Ht(p)) to the next block (Ht+1(p)) take place according to the dynamical equation

Ht+1(p) = α(p)Ht(p) +
√

(1− α2(p))e−βpU t(p) (54)

where α(p) is related to the Doppler frequency fD(p) by α(p) = J0(2πfD(p)T ) (T being the time duration of one ST block),

β is the exponent of the channel decay profile while the factor
√

(1− α2(p))e−βp represents the exponential decay profile

(e−βp) for all time and U t(p) ∼ N (0, 1) is an iid matrix. The model approximates the non rational Jakes model by a 1st

order AR model. A higher order AR model would give a better approximation but at the expense of increased latency at

the receiver. From (54), we can obtain the impulse response htx
rx

between transmit antenna tx and receive antenna rx.

htx
rxt+1

(p) = α(p)htx
rxt

(p) +
√

(1− α2(p))e−βputx
rxt

(p) (55)

Stacking (55) over the taps p = 0, 1, . . . , P, we get the dynamical model

htx
rxt+1

= Fhtx
rx

+ Gutx
rx

(56)

where htx
rx

is the channel IR at rx = 1 · · ·Rx and tx = 1 · · ·Tx, and F and G are the same as given by (2). Stacking (56) for

all transmit and receive antennas, we obtain

ht+1 = (ITxRx ⊗ F ) ht + (ITxRx ⊗G) ut (57)

where

ht =
[

h1
1 · · · hTx

1 h1
2 · · · hTx

2 · · · h1
Rx

· · · hTx
Rx

]T

and where the vectors ht+1, ht, and ut, are of size TxRx(P )× 1. To employ the Kalman filter, we still need to characterize

the covariance information of the dynamical model, specifically we need the covariance of ut and also the covariance of
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the channel at t = 0. It can be shown that

E [utu
∗
t ] = IRx ⊗ E [urxu∗rx

] (58)

= IRx ⊗
(
ITx ⊗ E

[
utx

rx
utx∗

rx

])
(59)

= IRx ⊗ ITx ⊗ IP = ITxRx(P ) (60)

and

E [h0h
∗
0] = ITxRx ⊗GG∗

It is worthwhile to note that while (54) and (57) are equivalent, the latter model is in vector form and will be useful for

Kalman filter operations.

In the channel model described above, we did not consider the transmit/receive correlation between the antennas.

When both transmit/receive correlation are incorporated in the channel model, the dynamical equation remains same as

in (57) but the covariance of ut is given by (see (Al-Naffouri and Quadeer, 2008) for further details)

E[uu∗] =

P∑
p=0

R(p)⊗ T (p)⊗ (
IpBI

p)

where T (p) and R(p) are the transmit and receive correlation matrix (of size Tx and Rx) respectively.

The receiver will perform two functions namely channel estimation and data detection. So we need to derive two

forms of the input/output equation. The first is a channel estimation form, which treats the channel impulse response as the

unknown and which together with the dynamical model (57) forms the state space model that is used by the FB Kalman

filter. The second is a data detection form, which treats the input in its uncoded form as the unknown. In the Single Input

Single Output (SISO) case, we defined the frequency domain input/output relationship by (4). For the MIMO OFDM case,

the input/output relation between transmit antenna tx and receive antenna rx is given by

Ytx
rx

= diag (X tx) Q∗
P htx

rx
+ N rx (61)

By stacking, the input/output equation at receive antenna rx can be expressed as

Yrx = [diag(X 1) · · · diag(X Tx)] (ITx ⊗Q∗
P )hrx

+ N rx (62)

In what follows, we describe the channel estimation version of the input/output equation for STBC MIMO OFDM

transmission over block fading channels. We omit the data detection version as it is similar to the SISO case and as it does

not directly relate to the operation of the FB Kalman, which is the center of attention of this chapter. The reader can find

more information in (Al-Naffouri and Quadeer, 2008).

9.2. Input/Output Equation

The input/output equation in STBC MIMO OFDM transmission can be divided into the following two categories:

1. Channel Estimation Version

2. Data Detection Version
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Channel Estimation Version

Consider a MIMO OFDM system which has Nc time slots, Tx transmit antennas and Rx receive antennas. Let Nu be the

set of uncoded OFDM symbols {S(1), . . . , S(Nu)}which are to be transmitted. We can implement the Alamouti (ST) code

using the set of Tx ×Nc matrices {A(1), B(1), . . . , A(Nu), B(Nu)} following the procedure in (Larsson and Stoica, 2003).

Thus, the OFDM symbol transmitted from antenna tx at time nc is given by

X tx(nc) =

Nu∑
nu=1

atx,nc(nu)Re S(nu) + jbtx,nc(nu)Im S(nu) (63)

where atx,nc(nu) is the (tx, nc) element of X(nu) and btx,nc(nu) is the (tx, nc) element of B(nu). So, instead of (62), the

input/output equation at antenna rx at OFDM symbol nc of a ST block takes the form

Yrx(nc) = [diag(X 1(nc)) · · · diag(X Tx(nc))](ITx ⊗Q∗
P )hrx

+ N rx(nc)

Stacking over all symbols yields

Yrx = Xhrx
+ N rx (64)

where

Yrx =




Yrx(1)

...

Yrx(Nc)


 , X =




{diag(X 1(1)) · · · diag(X Tx(1))}(ITx ⊗Q∗
P+1)

{diag(X 1(2)) · · · diag(X Tx(2))}(ITx ⊗Q∗
P+1)

...

{diag(X 1(Nc)) · · · diag(X Tx(Nc))}(ITx ⊗Q∗
P+1)




(65)

Further stacking this relation for all receive antennas, we get an input/output relationship at all frequency bins, for all

input and output antennas, and for all OFDM symbols of the tth ST block

Yt = (IRx ⊗Xt)ht + N t (66)

Pruning (66), we get the set of those equations where the pilots are present and the pilot/output equation takes the form

YtIp
= (IRx ⊗XtIp

)ht + N tIp
(67)

Data Detection Version

Signal detection MIMO case is done in the same fashion as the SISO case, i.e. on a tone-by-tone basis except that the tones

are collected for Rx receive antennas and over Nc time slots (the whole ST block). As mentioned above, we will omit the

details of the data detection version as it is similar to the SISO case discussed in Section 5.3. The reader is also invited to

check (Al-Naffouri and Quadeer, 2008) for more details.
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9.3. Channel Estimation using EM based FB Kalman

As we showed in Section 5, the MAP estimate for a sequence of T + 1 input and output symbols XT
0 and YT

0 is given by

(11). For the MIMO case, we can use (57) and (66) to express the channel log likelihood as

L = −
T∑

t=1

‖Yt − (IRx ⊗Xt)ht‖21
σ2

n

−
T∑

t=1

‖ht − (ITxRx ⊗ F )ht−1‖2(GRuG∗)−1 − ‖h0‖2Π−1
0

(68)

In what follows, we present the known and the unknown input data cases for channel estimation.

Known Input Case (Initial Channel Estimation)

Let us start with the simple case of known input i.e. when pilots are used to estimate the channel. The MAP estimate of

hT
0 for the input and output sequences XT

0 and YT
0 respectively can be obtained by applying the FB Kalman (16) - (22) on

the following state-space model

ht+1 = (ITxRx ⊗ F )ht + (ITxRx ⊗G)ut

YtIp
= (IRx ⊗XtIp

)ht + N tIp

where h0 ∼ N (0,Π) and ut ∼ N (0, Ru).

Unknown Input Case

When input is unknown, the EM algorithm can be used to estimate the channel similar to what we described in Section

6. In this case, we maximize the averaged form of log-likelihood (68). Thus, the jth iteration of the EM algorithm is now

obtained by maximizing the averaged log-likelihood

L = E
XT

0 |YT
0 ,h

T (j−1)
0

[L] (69)

As shown in Section 5.3, this is done by representing the input by its first and second moments and applying the FB Kalman

(16) - (22) to the following state space model

ht+1 = (ITxRx ⊗ F )ht + (ITxRx ⊗G)ut (70)

 Yt

0TxRx(P )×1


 =


 IRx ⊗ E[Xt]

IRx ⊗ Cov[X∗
t ]

1/2


 ht +


 N t

nt


 (71)

where nt is virtual noise and is independent of the physical noise N t.

9.4. Data Detection

The data is detected by using the data detection version of the input/output equation which in turn is used to obtain the

first and second moments of the inputs needed in (70) - (71). This is similar to the SISO case described in Section 5.3. The

reader can also refer to (Al-Naffouri and Quadeer, 2008) for more details.

To show the favorable behavior of the algorithm, we simulate a MIMO OFDM system in which a 1/2 rate convolutional

encoder is used as an outer encoder. 16-QAM with Gray coding is used as the modulation scheme. Orthogonal space time
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block coding (OSTBC) commonly known as Alamouti code (number of time slots, Ns = 2 and number of transmitters, Tx

= 2) is used (Alamouti, 1998). Other parameters used are α = 0.985, β = 0.2, and P = 7. Each packet consists of 12 OFDM

symbols transmitted over six ST blocks. Each OFDM symbol consists of 64 frequency tones and a cyclic prefix of length 8.

The first ST block is comprised of 16 pilots while the number of pilots in subsequent blocks can be varied from zero to 16.
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Figure 1.6: Comparison of EM-MMSE and EM-FB Kalman algorithms

To benchmark the proposed algorithm, it is compared with an EM-based iterative MMSE receiver (proposed in (Li et al.,

2001) and (Cozzo and Hughes, 2003)) in Figure 1.6 over a spatially white channel. The Expectation step in this algorithm

is calculated through MMSE estimation i.e. by a conditional expectation of the channel given the received symbol and

the current estimate of the transmitted data. The Maximization step is simply the maximum likelihood estimate of the

transmitted data. In this algorithm, the pilots are confined only to the first space time (ST) block which is used to produce

the initial channel estimate. In Figure 1.6, the two algorithms are compared for two scenarios with respect to pilots. In

first scenario, 16 pilots are used in the first ST block and zero pilots in the subsequent ST blocks. In the second scenario,

the EM-MMSE algorithm has 26 pilots in the first ST block and zero pilots in the subsequent ones while the proposed

algorithm (EM-FB Kalman) has 16 pilots in the first ST block and 2 pilots in the subsequent blocks, ensuring the same pilot

overhead. It can be easily observed that our algorithm outperforms the EM-MMSE algorithm in both scenarios.

Figure 1.7 describes the effect of spatial correlation over performance of the algorithm for a MIMO OFDM transmission.

The parameters used here are same except that channel length, P = 15, α = 0.8, and transmit and receive correlation

matrices are given by

T (p) =


 1 ζ

ζ 1


 and R(p) = I

where ζ = 0.8. The number of pilots in subsequent blocks is fixed at 12 and two EM iterations are used. It can be observed

that the performance of both Forward only and FB Kalman is better over spatially correlated channel (practical scenario)

as compared to their performance over spatially white channel.

Figure 1.8 compares the performance of the different implementations of the Kalman filter (Forward Only Kalman,

Cyclic FB Kalman and Helix based FB Kalman discussed in Section 6) over spatially correlated channel. It can be seen that

the Helix based FB Kalman filter outperforms the other two implementations.
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Figure 1.7: BER performance of Forward only Kalman and FB Kalman using Soft data over spatially white and correlated
channel models

10. Conclusion

In this chapter, we presented an iterative receiver for data transmission over time variant channels. Such a receiver needs

to perform the two tasks of channel estimation and data detection. Moreover, since these two tasks can enhance each

other, they were run iteratively. The focus in this chapter was on the channel estimation part, whose maximum likelihood

estimate boils down to a forward backward Kalman filter. To run this filter we just need to construct an input/output equa-

tion that describes the operation of the channel and a dynamical model that describes the time evolution of the channel. In

addition we need an input/output equation that can be used for data detection.

We demonstrated the receiver design for 3 OFDM systems: single user single antenna (SISO) OFDM, multi-access

OFDM, and multiple antenna (MIMO) OFDM. Moreover, the three different implementations of the Kalman filter (Cyclic

FB Kalman, Helix FB Kalman and Forward only Kalman) were presented along with their comparative performance. The

simulation results demonstrated in this chapter indicate that Kalman filter based receivers perform quite well in wireless

environment and thus are potential contenders for practical receivers.
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