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ABSTRACT 

In this paper we propose a new hybrid algorithm for 
solving the Unit Commitment Problem (UCP). The 
algorithm integrates the use of Simulated Annealing 
(SA) and Tabu Search (TS) for solving the UCP. The 
algorithm includes a step to find an initial control 
parameter, at which virtually all trial solutions are 
accepted. It uses a polynomial-time cooling schedule 
that is advocated in the SA literature. Furthermore the 
short-term memory procedures of the TS method are 
embedded in the SA test to prevent cycling of accepted 
solutions. Numerical examples from the literature are 
solved. Results showed an improvement in the solutions 
costs compared to previously obtained results. 

1. INTRODUCTION 

Unit commitment is the problem of optimal 
scheduling of the generating units during a specified 
time horizon. The committed units must meet the system 
load and reserve requirements at minimum operating 
cost, in addition to a variety of constraints. The 
Economic Dispatch problem (EDP) is to optimally 
allocate the load demand among the running units while 
satisfying the power balance equations and units 
operating limits[ I]. 

The Unit Commitment Problem (UCP) can be 
considered as two linked optimization problems, the first 
is a combinatorial problem and the second is a nonlinear 
programming problem. The exact solution of the UCP 
can only be obtained by a complete enumeration of all 
feasible combinations of generating units, which could 
be a very huge number. Then, the economic dispatch 
problem is solved for each feasible combination. 
Basically, the high dimension of the possible solution 
space is the real difficulty in solving the problem. 

The solution methods being used to solve the UCP 
can be divided into four categories[ I - I?]: 

* Classical optimization methods such as: dynamic 
programming, integer progmqming, branch and 
bound 
and Lagrangian relaxation. 

* Heuristic methods such as priority list . 

Artificial Intelligence methods such as: neural 
networks, expert systems, genetic algorithms, tabu 
search, and simulated annealing. 
Hybrid algorithms. 

Classical optimization methods are well documented 
in the literature as a direct means for solving this 
problem. Some of these methods give good results, like 
Lagrangian relaxation, while others face the problem of 
dimensionality, especially in case of large-scale systems, 
as in dynamic programming. 

In heuristic methods, a suboptimal solution may be 
obtained due to the incomplete search of the solution 
space besides the lack of a mathematical proof for 
reaching the optimal solution. 

Artificial Intelligence methods seem to be promising 
and are still evolving. Genetic algorithms and neural 
networks are inspired by principles derived from 
biological processes, while simulated annealing is 
derived from material science. These methods need not 
be viewed competitively, and they comprise the 
emergence of promise for conquering the combinatorial 
explosion in a variety of decision-making arenas[ 141. 

Hybrid algorithms are also well known techniques 
for solving optimization problems. They try to make use 
of the merits of different methods. Hence, the aim of 
hybridization is to improve the performance of 
algorithms that are based on a single method. 

(SA), is a powerful technique 
for solving combinatorial optimization problems. It has 
been theoretically proved to converge to the optimum 
solution. SAA has also many strong features [15-181. 
The most important features are; finding a high quality 
solution that does not strongly depend on the initial 
solution and it does not need large computer memory. 

Tabu Search (TS) is an efficient optimization 
procedure that has been successfully applied to a number 
of combinatorial optimization problems[ 19-25]. It has 
the ability to avoid entrapment in local minima. TS 
employs a flexible memory system (in contrast to 
‘memoryless’ systems, as SA and GA, and rigid memory 
systems as in branch-and-bound). Specific attention is 
given to the short-term memory component of TS, which 
has provided solutions superior to the best obtained by 
other methods for a variety o f  problems[l9]. 

Simulated Annealing 
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In previous works for the authors to solve the UCP, a 
SA algorithm (SAA) and a TS algorithm (TSA) have 
been implemented [ 1 1 - 131. 

The proposed hybrid algorithm is based mainly on 
the SAA while TS is used to prevent the repeated 
solutions from being accepted by the SA test. 

In the next section, the formulation of the UCP is 
presented. Sections 3 and 4 give a general explanation of 
the SA and the TS methods. Section 5 presents the 
detailed description of the proposed algorithm. In 
Section 6 the computational results along with a 
comparison with previously published work are 
presented. Section 7 outlines the conclusions. 

2. PROBLEM STATEMENT 

In the UCP under consideration, one is interested in a 
solution that minimizes the total operating cost of the 
generating units during the scheduiing time horizon 
while several constraints are satisfied [ 1 - 131. 

2.1 The Objective function: 
The overall objective hnction of the UCP of N 

generating units for a scheduling time horizon T , (e.g., 
24 HRs), is: 

T N  

t=l i=l 
FT = ~ ~ ( u i t ~ i t ( ~ l t ) + ~ i t s i t ) $  (1) 

Where 
Uit : is status of unit i at hour t (ON=], OFF=O). 
Vit : is start-up/shut-down status of unit i at hour t. 
Pit : is the output power from unit i at time t 

is conventionally taken in a quadratic form: 
The production cost, Fit (Pit ) , of a committed unit i, 

Where, A i, B i ,  c : are the cost function parameters of 
unit i. 

The start-up cost, Sit, is a function of the down time 
of unit i [6]: 

Sit = Soi[l- Diexp(-Toffi i Tdowni)] + Ei $ (3) 

Di,Ei : are start-up cost coefficients for unit i. 
Where, Soi : is unit i cold start-up cost, and 

2.2 The Constraints: 
The constraints that have been taken into 

consideration in this work, may be classified into two 
main groups: 
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2.2.1 System Constraints: 
1 - Load demand constraints: 

N 

(4) 
i=l 

Where PD : is the system peak clemand at hour t (MW). 

2- Spinning Reserve 
Spinning reserve,Rt, is the total amount of 

generation capacity available from all units synchronized 
(spinning) on the system minus the present load demand. 

FUitPmaxi 2(PDt .tRt);Vt ( 5 )  
i=l 

2.2.2 Unit Constraints: 

1 - Generation limits 
UitPmini s Pit sPmaqUit Vi, t (6) 

Wh\ere, Pmini , Pmaxi is minimum and maximum 
generation limit (MW) of unit i. 

2- Minimum upidown time 
TOffi 2 Tdowni 
Toni 2 TUpi ; Vi (7) 

Where Tupi , Tdowni :are unit i minimum up/down time. 
are time periods during which unit Toni, Toffi : 

3-Unit initial status 
4-Crew constraints 
5-Unit availability; e.g. , must run, unavailable, 

6-Unit derating 

i is continuously ONiOFF. 

available, or fured output (MW). 

3. SIMULATED ANNEALING ALGORITHM 

3.1 Concepts of Simulated Annealing: 
Annealing physically [ 15,17,18], refers to the process 

of heating up a solid to a high temperature followed by 
slow cooling achieved by decreasing the temperature of 
the environment in steps. At ealch step the temperature is 
maintained constant for a period of time sufficient for 
the solid to reach thermal equililbrium. 

3.2 Application of Simulated Annealing to 
Combinatorial Optimization Problems: 
In applying the SAA, to solve the combinatorial 

optimization problem, the basic idea is to choose a 
feasible solution at random and then get a neighbor to 
this solution. A move to this neighbor is performed if 
either it has a better (lower) objective value or, in case 
the neighbor has a higher ob-jective function value, if 



exp( -~E Cp) 2 U(O,1), where AE IS the increase in 
objective value if we move to the neighbor. The effect of 
decreasing Cpis  that the probability of accepting an 
increase in the objective function value is decreased 
during the search [ 14,171. 

4. TABU SEARCH METHOD 

4.1 Overview: 
Tabu Search is characterized by an ability to escape 

local optima by using a short-term memory ofrecent 
solutions. This is achieved by a strategy of forbidding 
certain moves. The purpose of classifying certain move 
as forbidden - i.e. “tabu”- is basically to prevent cycling. 
Moreover, TS permits backtracking to previous 
solutions, which may ultimately lead, via a different 
direction, to better solutions[23]. 

The main two components of TS algorithm are the 
Tabu List (TL) restrictions and the Aspiration Level 
(AV). Discussion of these two terms is presented in the 
following sections. 

4.2 Tabu List 
Tabu List (TL) is managed by recording moves (trial 

solutions) in the order in which they are made. These 
recorded solutions are considered tabu for certain 
number of iterations equal to the TL size[22,24]. 

4.3 Aspiration Criteria (AV): 
Another key issue of TS arises when the move under 

consideration has been found to be tabu. Associated with 
each entry in the tabu list there is a certain value for the 
evaluation function called Aspiration Level (AV). 
Roughly speaking, AV criteria are designed to override 
tabu status if a move is “good enough”[24]. 

In the following section we describe the details of the 
proposed algorithm as applied to the UCP. 

5. THE PROPOSED ALGORITHM FOR THE 
UNIT COMMITMENT PROBLEM 

5-1 Main Idea of the Algorithm: 
The new proposed algorithm (we call it ST 

algorithm) integrates the main features of the SA and TS 
algorithms to solve the combinatorial optimization part 
of the UCP and a quadratic programming routine solves 
the nonlinear part. 

The main feature of the TS method is to prevent 
cycling of solutions by using short term memory. This 
could be explored in refining the SAA, which is a 
memoryless technique. The main idea in the proposed 
algorithm is to use the TS algorithm to prevent the 
repeated solutions from being accepted by the SAA. 
This will save CPU time and improve the quality of the 
solution obtained. This is achieved by applying the TS 

test for all triat sofutions. The accepted solution from the 
tabu test is then tested by the SAA. 

In brief the proposed ST algorithm may be described 
as a SAA with the TS algorithm used as a filter to 
prevent cycling of accepted solutions. 

The main steps of the ST algorithm are described in 
the flow chart of fig.( 1). 

5.2 Generating Trial Solution (Neighbor): 
The neighbors shoutd be randomly generated (block 

4, fig(l)), feasible, and span as much as possible the 
problem solution space. Because of the constraints in the 
UCP this is not a simple matter. The most difficult 
constraints to satisfy are the minimum up/down times. 

In this work we use our rules to obtain randomly 
feasible solutions. These rules are described in details in 
[ I  11. 

5.3 Operating Cost Calculation: 
Once a trial solution is obtained, the corresponding 

total operating cost is determined (block 4). Since the 
production cost is a quadratic function, the EDP is 
solved using a quadratic programming routine. The start- 
up cost is then calculated for the given schedule using 
(2) .  
5.4 Tabu Search Part  in the Algorithm: 

In the TS part of the ST algorithm the short-term 
memory procedures are implemented. In this work we 
use a new approach for implementing the TL forthe 
UCP. In this approach the solution vector for each 
generating unit (which is 0- 1 values) is recorded as its 
equivalent decimai number. Hence the Generating Unit 
Tabu List (GUTL) is a one dimensional array of length 
Z. Each entry records the equivalent decimal number of 
a specific trial solution for that unit. By using this 
approach we record all information of the trial solution 
in minimum memory. 

The implementation of the TSA (block 5 )  can be 
described as follows: 

0 Sort the set of trial solutions (neighbors) in an 
ascending order according to their objective 
functions. 

0 Apply the acceptance test in order until one of these 
solutions is accepted. 

0 Tabu test: Accept the trial solution if: 
- The trial solution is not in the TL, or 
- In the TL but satisfies the AV. 

Otherwise, apply the test to the next solution. 

5.5 Simulated Annealing Part  in the Algorithm: 
In the SA part of the ST algorithm the polynomial- 

time cooling schedule is implemented (described in the 
appendix) to decrement the control parameter during the 
search (block 9). 
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The SA test (block 6 )  is described as follows: 
Accept the trail solution: 
if F, <Fi or 

[exp(Fi -F j ) /Cp]  2 U(O,I), 
where F i ,  Fj are the objective function of the current 

and trial solutions respectively 
Otherwise the trial solution is rejected. 

Apply TS test to accept one of these solutions. 
Update the best solution and the TS parameters. 

Apply SA test to accept or reject the trial solution 
accepted in the previous step. Update current and 

best solution 

V 

V I Initialize TS and SA parameters I 1 

5 

6 

V 
Find randomly an initial feasible solution 12 

Total Cost ($) 
73 

3 
Generate a set of neighbors to the current solution. 
Calculate the objective functions of these solutions 

Example SAArl11 TSAfl31 ST 
1 536622 538390 536386 
2 59512 59512 59385 
3 662664 662583 660596 

Decrement the control 
parameter Cp 9 

Fig.(l) The proposed SATS algorithm for UCP 

5.6 Stopping Criteria: 
There may be several possible stopping conditions 

for the search. In our implementation we stop the search 
if one of two conditions are satisfied respectively; 

-The best solution is not changing for a prespecified 

-Maximum allowable number of iterations is reached. 
number of iterations. 

6.  NUMERICAL EXAMPLES 

Considering the proposed ST algorithm for solving 
the UCP, a computer program has been implemented 
and tested. 

In order to test the proposed algorithm three different 
examples are solved. The first two examples include 10 

generating units whiie tlhe third contains 26 units. Tfie 
scheduling time horizon for all cases is 24 hours. 
Example 1,[5], was solved by Lagrangian 
Relaxation(LR), Example 2,[6], was solved by Integer 
Programming(1P) while Example 3,[7,8], was solved by 
Expert Systems. 

To emphasis the effectiveness of hybridizing the SA 
and the TS algorithms, a comparison is made with the 
results of those algorithms. The three examples are 
solved by the SA algorithm (SAA) and the TS algorithm 
(TSA) reported by the authors in [ 1 1,131. 

The following control parameters have been chosen 
after running a number of simulations: maximum 
number of iterations=3000, tabu size=7, initial 
acceptance ratio during the heating process=0.9, chain 
length=150, E =0.00001, and 6 =0.3. 

Table (6.1) shows a comparison of the results 
obtained for the three examples 1,2, and 3 as solved by 
the SAA, the TSA and the ST algorithms. It is obvious 
that the ST algorithm achieves reduction in the operating 
costs for the three examples. Also, the number of 
iterations is less. 

Table (6.2) also shows a comparison of the ST 
algorithm results with the results of the LR and IP for 
Examples 1 and 2. It is obvious that significant cost 
savings are achieved. 

Detailed results for ]Example 1 are given in Tables 
(6.3) and (6.4). Table (6.3) shows the load sharing 
among the committed units in the 24 hours. Table (6.4) 
gives the hourly load demand, and the corresponding 
economic dispatch costs, start-up costs, and total 
operating cost. 

Table (6.1) Comparison with the SAA and the TSA 

Table (6.2) Comparison with LR and IP methods 

2.1 1 
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Table (6.3) Power sharing (MU') of Example 1. 

lJnit Nuniber** 
2 3 4 6 7 x 9 1 0  

22 
23 
24 

400.00 217.46 320.12 200.00 0.00 375.00 0.00 137.42 
400.00 165.00 246.88 0.00 0.00 375.00 0.00 113.12 
396.36 165.00 163.80 0.00 0.00 339.29 0.00 85.55 

**  Units 1 and 5 are OFF all hours 

15  2.70E+03 2.73E+04 O.OOE+OO 
16 2.55E+03 2.58E+04 O.OOE+OO 
17 2.73E+03 2.75E+04 O.OOE+OO 

Table (6.4) Load demand and hourly costs (%) of Example 1 

HR I LOAD I ED-COST I ST-COST I T-COST 1 

2.73E+04 
2.58E+04 
2.75E+04 

t 14 I 2.95E+03 I 2.97E+04 I O.OOE+OO 1 2.97E+04 I 

Total operating cost = $536386. 

7. CONCLUSIONS 

In this paper we proposed a new hybrid algorithm for 
the UCP. The algorithm integrates the main features of 
two of the most efficient methods for solving 
combinatorial optimization problems, simulated 
annealing and tabu search. The algorithm is based 
mainly on the SA, while the TS method is used to reject 
the repeated solutions before being tested by the SA 
method. 

The current SAA implementation [ 1 I ]  is based on a 
polynomial time cooling schedule which uses statistics 
calculation during the search. It also provides a 
methodology for determining an initial temperature 
value, by simulating the heating step of the annealing 
process. at which a prespecified initial acceptance ratio 
is achieved. The TS part of the algorithm is implemented 
using the short term memory procedures[ 131. 

Three examples from the literature were solved for 
comparison with other methods. The obtained results are 
superior to those reported in [5,6] using Lagrangian 
Relaxation and Integer Programming. Moreover the 
obtained results (using the proposed ST algorithm) are 
better than those obtained using the individual SA and 
TS in [ I  1,131. 

A basic advantage of the proposed algorithm is the 
high speed of convergence besides the high quality of 
solutions compared to those obtained by SA and TS 
methods. Further work in this area may be in the 
application of parallel processing techniques, thus 
reducing the computation time or exploring wider 
solution space. 
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9. APPENDIX 

THE POLYNOMIAL-TIME COOLING 
SCHEDULE 

A finite-time implementation of 
realized by generating homogenous 
finite length for a finite sequence of 

the SAA can be 
Markov chains of 
descending values 

of the control parameter. To achieve this, a cooling 
schedule should be designed to govern the convergence 
of the algorithm. 

In this work, a Polynomial-Time schedule is 
implemented. This cooling schedule leads to a 
Polynomial-Time execution of the SAA, but it can not 
give any guarantee for the deviation in cost between the 

final solution obtained by the algorithm and the optimal 
cost. In the following we describe these parameters [15]. 

9.1 Initial Value of the Control Parameter Cp 

The initial value of Cp, is obtained from the 
requirement that initially virtually all proposed trial 
solutions should be accepted. 

It can be shown that the: Cp is calculated by[ 151: 

Cp = Af/  In(m2 / (m2.X - ml(l - X) 
where: ml, m2 denote the number of trials that 

having less and excess objective function values than 

that of the current solution respectively. Af : is the 
average difference in cost over the m2 trials. X: is 
the acceptance ratio. 

9.2 Decrement of the Control Parameter 

(+) 
(8) 

(+) 

C p k+l at iteration k+ 1 is related to the current value, 
c pk , by the following function[ 151: 

where: (3 is the standard deviation of the cost values 
generated at the ktJ Markov chain, corresponding to 

cp . 6 is a constant called distance parameter. Small 
6 -values lead to small decrements in Cp. Typical 
values of 6 are between 0.1 and 0.5. 

9.3 The Final value of thie control parameter 
Termination in the Polynomial-Time cooling 

schedule is based on ark extrapolation of the expected 
average cost at the find value of control parameter. 
Hence the algorithm is terminated if for some value of k 
we have [ 151 : 

Cpk m c p  < E  (10) -.-I m a a  8CP cp=cpk 
where, (f)m = (f)cp0 is the average cost at initial 

value of control parameter Cp, . (f)cp is the average 
cost at kQ Markov chain. a ( f ) C p  is the rate of 

change in the average cost at c p k  . E is some small 
positive number. In our implementation E =0.00001. 

9.4 The Length of Markov Chains: 
In [15], it is concludeid that the decrement function of 

the control parameter, (9),  requires only a ‘small’ 
number of trial solution to rapidly approach the 
stationary distribution for a given next value of the 
control parameter. In general, a chain length ofmore 
than 100 transitions is reasonable[l5]. In our 
implementation good rlesults have been reached at a 
chain length of 150. 

=Ic p = p, 
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