
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Electrical Engineering Department EE-416 Analog Filter Design Instructor: Dr. Hussain Alzaher

Exam-I (061)

Name: I.D.# Serial #:

- 1) Determine the order n of the Butterworth filter for which $\alpha_{\rm max}$ =1 dB, $\alpha_{\rm min}$ =20 dB, and $\omega_{\rm s}/\omega_{\rm p}$ =1.3. What is the actual value of minimum stopband attenuation realized? If to be exactly 20 dB, to what value can $\alpha_{\rm max}$ be reduced.
- 1) Design lowpass filters with <u>Chebyshev</u> and <u>Inverse-Chebyshev</u> responses satisfying the following specifications: $\alpha_{\text{max}} = 0.1 \text{ dB}$, $\alpha_{\text{min}} = 30 \text{ dB}$, $\omega_p = 1000 \text{ rad/s}$, $\omega_s = 1400 \text{ rad/s}$. Adjust the gain such that the dc gain becomes 0 dB. [5/15]

2) (a) Determine (estimate) the degrees necessary for maximally flat and Cauer (elliptic) filters to meet the following requirements.

$$\alpha_{\max}[dB]$$
 $\alpha_{\min}[dB]$ $\omega_p[rad/s]$ $\omega_s[rad/s]$
1 40 1000 2000

(b) Determine the transfer functions of the above lowpass filters that meet the above specifications. [6/15]

3) Design a fourth-order Bessel-Thomson filter to provide 500- μ s delay. What are the filter's attenuation error and the delay error in the frequency band $0 \le f \le 2.6kHz$? [4/15]