

Major Exam # 2

Electronics I EE 203

Name	
ID#	

Dr. Hussain Al-Zaher	Dr. Adnan Andulasi	Dr. Munir Al-Absi

Date: December 4, 2007

Time: 6:30-8:00pm

Problem #1	
Problem # 2	
Problem # 3	
Total Grade	

Problem # 1 (10) points

In the circuit shown, β is large. Find I_C , $V_D,\,V_E$, g_m and $\ r_e$

Problem # 2

Consider the circuit shown below, with the NMOS transistor operating in saturation. Assume the following values: $V_{GS}=2V$, $V_{th}=1V$, $K_n^{'}W/L = 2mA/V^2$,

- (a) What type of circuit is this? (specify exactly)
- (b) Show that $g_m=2mA/v$
- (c) Draw the small-signal equivalent model for the whole circuit
- (d) Derive the expression and compute the voltage gain v_o/v_{sig}
- (e) Find the input resistance R_i
- (f) Find the output resistance R_o
- (g) If the bypass capacitor is removed what will be the effect on the voltage gain

Problem # 3

For the common-base amplifier shown, assume β =100,

- (a) Perform DC analysis to determine I_C and confirm that the transistor is working in active mode.
- (b) Replace the transistor with its T-model and draw the amplifier small signal equivalent circuit.
- (c) Calculate the voltage gain vo/vs,
- (d) Calculate the input resistance
- (f) What is the value of the output resistance?

