

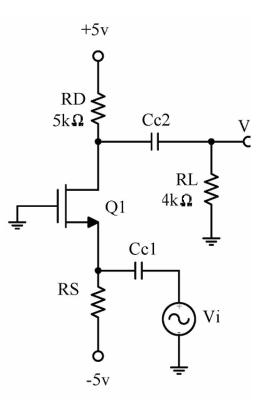
King Fahd University of Petroleum & Minerals Electrical Engineering Department

EE 203 – Exam II (062) May 12, 2007

Name	
ID	

	Dr. AL-Absi	Dr. Al-Sunaidi	Dr. Hussein	Dr. Al-Gahtani	Dr. Al-Zaher
Section	1	2	3	4 5	6 7

- Solve <u>all</u> problems.
- Total exam time is 90 minutes.


Problem	Grade	
Problem 1, Part A	[20 points]	
Problem 1, Part B	[20 points]	
Problem 2, Part A	[20 points]	
Problem 2, Part B	[20 points]	
Problem 3	[20 points]	
Total [100 pc		

Part A

[20 points]

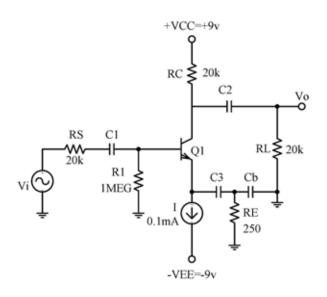
Consider the MOSFET amplifier circuit shown, assume $\lambda=0$, V_t= 1V and $\mu C_{ox}W/L=5.5$ mA/V². i) Draw the DC circuit

- ii) Design the circuit (find Rs) such that gm=5mA/V.

Part B

[20 points]

For the amplifier circuit in part A


- i) Draw the amplifier small signal equivalent circuit.ii) Calculate the voltage gain of the amplifier.iii) Calculate the input and output resistance.

Part A

[20 points]

The circuit shown is a BJT amplifier with large β and an early effect voltage V_A=100 i) What is the type of the amplifier?

- ii) Draw the amplifier DC circuit
- iii) What are the values of I_E , I_C and I_B
- iv) Calculate the small signal parameters g_m & r_e

Part B

[20 points]

For the amplifier circuit in part A

- i) Draw the amplifier small signal equivalent circuit using π model
- ii) Drive an expression for the voltage gain and find its value
- iii) Find the input and output resistance
- iv) If the capacitor C_b is removed ,comment on its effect on the gain

[20 points]

For the differential amplifier shown, assume identical transistors with large V_A . Find I_{E1} , I_{E2} , V_{C1} , and V_{C2} , for the following cases:

- i) $R_{C1} = R_{C2} = 5k\Omega$ ii) $R_{C1} = 0 \Omega$ and $R_{C2} = 5k\Omega$
- iii) $R_{C1}=0 \Omega$, $R_{C2}=5k\Omega$ and a resistor $R_{EE}=20 k\Omega$ is connected in parallel with the current source.

