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Fall 2003, Handout 30

Lecture 15

In the previous lecture we studied three properties of III that make it so useful in many appli-
cations. They are:

• Periodizing

– Convolving with III periodizes a function

• Sampling

– Multiplying by III samples a function

• The Fourier transform of III is III.

– Convolving and multiplying are themselves flip sides of the same coin via the convolution
theorem for Fourier transforms.

We are now about to combine all of these ideas in a spectacular way to treat the problem of
‘sampling and interpolation’. Let me state the problem this way:

• Given a signal f(t) and a collection of samples of the signal, i.e. values of the signal at a set
of points f(t0), f(t1), f(t2), . . . , to what extent can one interpolate the values f(t) at other
points from the sample values?

This is an old question, and a broad one, and it would appear on the surface to have nothing to
do with III’s or Fourier transforms, or any of that. But we’ve already seen some clues, and the full
solution is set to unfold.

Sampling sines, and band-limited signals

Why should we expect to be able to do interpolation at all? Imagine putting down a bunch of
dots – maybe even infinitely many – and asking someone to pass a curve through them that agrees
everywhere exactly with a predetermined mystery function passing through those dots. Ridiculous.
But it’s not ridiculous. If a relatively simple hypothesis is satisfied then interpolation can be done!
Here’s one way of getting some intuitive sense of the problem and what that hypothesis should be.

Suppose we know a signal is a single sinusoid. A sinusoid repeats, so if we have enough infor-
mation to pin it down over one period, or cycle, then we know the whole thing. How many samples
– how many values of the function – within one period do we need to know to know which sinusoid
we have? We need three samples strictly within one cycle. You can think of the graph, or you can
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think of the equation: A general sinusoid is of the form A sin(2πνt+φ). There are three unknowns,
the amplitude A, the frequency ν and the phase φ. We would expect to need three equations to
find the unknowns, hence we need values of the function at three points, three samples.

What if the signal is a sum of sinusoids, say

N∑

n=1

An sin(2πnνt + φn).

Sample points for the sum are ‘morally’ sample points for the individual harmonics, though not
explicitly. We need to take enough samples to get sufficient information to determine all of the
unknowns for all of the harmonics. Now, in the time it takes for the combined signal to go through
one cycle, the individual harmonics will have gone through several cycles, the lowest frequency
harmonic through one cycle, the lower frequency harmonics through a few cycles, say, and the
higher frequency harmonics through many. We have to take enough samples of the combined signal
so that as the individual harmonics go rolling along we’ll be sure to have at least three samples in
some cycle of every harmonic.

To simplify and standardize we assume that we take evenly spaced samples (in t). Since we’ve
phrased things in terms of cycles per second, to understand how many samples are enough it’s then
also better to think in terms of ‘sampling rate’, i.e. samples/sec instead of ‘number of samples’. If
we are to have at least three samples strictly within a cycle then the sample points must be strictly
less than a half-cycle apart. A sinusoid of frequency ν goes through a half-cycle in 1/2ν seconds so
we want

spacing between samples = (number of seconds)/sample <
1
2ν

The more usual way of putting this is

Sampling rate = Samples/sec > 2ν.

This is the rate at which we should sample a given sinusoid of frequency ν to guarantee that a
single cycle will contain at least three sample points. Furthermore, if we sample at this rate for a
given frequency, we will certainly have more three sample points in some cycle of any harmonic at
a lower frequency. Note that the sampling rate has units 1/seconds and, again, that the sample
points are 1/(sampling rate) seconds apart.

For the combined signal – a sum of harmonics – the higher frequencies are driving up the
sampling rate; specifically, the highest frequency is driving up the rate. To think of the interpolation
problem geometrically, high frequencies cause more rapid oscillations, i.e. rapid changes in the
function over small intervals, so to hope to interpolate such fluctuations accurately we’ll need a lot
of sample points and thus a high sampling rate. For example, here’s a picture of the sum of two
sinusoids one of low frequency and one of high frequency.
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If we sample at too low rate we might miss the wiggles entirely. We might mistakenly think
we had only the low frequency sinusoid, and, moreover, if all we had to go on were the samples we
wouldn’t even know we’d made a mistake! We’ll come back to just this problem a little later.

If we sample at a rate greater than twice the highest frequency our sense is that we will be
sampling often enough for all the lower harmonics as well, and we should be able to determine
everything. The problem here is if the spectrum is unbounded. If, as for a square wave, we have a
full Fourier series and not just a finite sum of sinusoids, then we have no hope of sampling frequently
enough to determine the combined signal from the samples. For a square wave, for example, there
is no ‘highest frequency’. That’s trouble. It’s time to define ourselves out of this trouble.

Band-limited signals From the point of view of the preceding discussion, the problem for in-
terpolation, is high frequencies, and the best thing a signal can be is a finite Fourier series. The
latter is much too restrictive for applications, of course, so what’s the ‘next best’ thing a signal can
be? It’s one for which there is a highest frequency. These are the band-limited signals – signals
whose Fourier transform is identically zero outside of a finite interval. Such a signal has a bounded
spectrum; there is a ‘highest frequency’.

More formally:

• A signal f(t) is band-limited if there is a 0 < p < ∞ with Ff(s) = 0 for all |s| ≥ p/2. The
smallest number p for which this is true is called the bandwidth of f(t).

There’s a question about having Ff be zero at the endpoints ±p/2 as part of the definition. For
the discussion on sampling and interpolation to follow it’s easiest to assume this is the case, and
treat separately some special cases when it isn’t. For those want to know more, read the next
paragraph.

Some technical remarks If f(t) is an integrable function then Ff(s) is continuous, so if
Ff(s) = 0 for all |s| > p/2 then Ff(±p/2) = 0 as well. On the other hand, it’s also common
first to define the support of a function (integrable or not) as the complement of the largest open
set on which the function is identically zero. (This definition can also be given for distributions.)
This makes the support closed, being the complement of an open set. For example, if Ff(s) is
identically zero for |s| > p/2, and on no larger open set, then the support of Ff is the closed interval
[−p/2, p/2]. Thus, with this definition, even if Ff(±p/2) = 0 the endpoints ±p/2 are included in
the support of Ff .

One then says, as an alternate definition, that f is band-limited if the support of Ff is closed
and bounded. In mathematical terms, a closed, bounded set (in Rn) is said to be compact, and so
the shorthand definition of band-limited is that Ff has compact support. A typical compact set
is a closed interval, like [−p/2, p/2], but we could also take finite unions of closed intervals. This
definition is probably the one more often given, but it’s a little more involved to set up, as you’ve
just witnessed. Whichever definition of band-limited one adopts there are always questions about
what happens at the endpoints anyway, as we’ll see.

Sampling and interpolation for band-limited signals

We’re about to solve the interpolation problem for band-limited signals. We’ll show that interpola-
tion is possible by finding an explicit formula that does the job. Before going through the solution,
however, I want to make a general observation that’s independent of the interpolation problem but
is important to it.
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It is unphysical to consider a signal as lasting forever in time. A physical signal f(t) is naturally
‘time-limited’, meaning that f(t) is identically zero on |t| ≥ q/2 for some q – there just isn’t any
signal beyond a point. On the other hand, it is very physical to consider a band-limited signal,
one with no frequencies beyond a certain point, or at least no frequencies that our instruments can
register. Well, we can’t have both, at least not in the ideal world of mathematics. Here is where
mathematical description meets physical expectation – and they disagree. The fact is:

• A signal cannot be both time-limited and band-limited.

What this means in practice is that there must be inaccuracies in a mathematical model of a
phenomenon that assumes a signal is both time-limited and band-limited. Such a model can be
at best an approximation, and one has to be prepared to estimate the errors as they may affect
measurements and conclusions.

Here’s one argument why the statement is true; I’ll give a more complete proof of a more general
statement in Appendix 1. Suppose f is band-limited, say Ff(s) is zero for |s| ≥ p/2. Then

Ff = Πp · Ff.

Take the inverse Fourier transform of both sides to obtain

f(t) = p sinc pt ∗ f(t).

Now sinc pt ‘goes on forever’; it decays but it has nonzero values all the way out to ±∞. Hence the
convolution with f also goes on forever; it is not time-limited.

sinc as a ‘convolution identity’ There’s an interesting observation that goes along with
the argument we just gave. We’re familiar with δ acting as an ‘identity element’ for convolution,
meaning

f ∗ δ = f.

This important property of δ holds for all signals for which the convolution is defined. We’ve just
seen for the more restricted class of band-limited functions, with spectrum from −p/2 to p/2, that
the sinc function also has this property:

p sinc pt ∗ f(t) = f(t).

As an exercise you can show that sinc also has the sifting property for band-limited functions:

p sinc p(t − a) ∗ f(t) = f(t − a).

The Sampling Theorem Ready to solve the interpolation problem? It uses all the important
properties of III, but it goes so fast that you might miss the fun entirely if you read too quickly.

Suppose f(t) is band-limited with Ff(s) identically zero for |s| ≥ p/2. We periodize Ff by IIIp

and then cut-off to get Ff back again:

Ff = Πp(Ff ∗ IIIp).

This is the crucial equation.
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Now take the inverse Fourier transform:

f(t) = F−1Ff(t) = F−1(Πp(Ff ∗ IIIp))(t)
= F−1Πp(t) ∗ F−1(Ff ∗ IIIp)(t)

(on the right, taking F−1 turns multiplication into convolution)
= F−1Πp(t) ∗ (F−1Ff(t) · F−1IIIp(t))

(ditto, except it’s convolution turning into multiplication)

= p sinc pt ∗ (f(t) · 1
p
III1/p(t))

= sinc pt ∗
∞∑

k=−∞
f(

k

p
)δ(x− k

p
) (the sampling property of IIIp)

=
∞∑

k=−∞
f(

k

p
) sinc pt ∗ δ(x − k

p
)

=
∞∑

k=−∞
f(

k

p
) sinc p(t − k

p
) (the sifting property of δ)

We’ve just established the classic ‘Sampling Theorem’, though it might be better to call it the
interpolation theorem. Here it is as a single statement:

• If f(t) is a signal with Ff(s) identically zero for |s| ≥ p/2 then

f(t) =
∞∑

k=−∞
f(

k

p
) sinc p(t − k

p
).

Some people write the formula as

f(t) =
∞∑

k=−∞
f(

k

p
) sinc(pt − k),

but I generally prefer to emphasize the sample points

tk =
k

p

and then to write the formula as

f(t) =
∞∑

k=−∞
f(tk) sinc p(t − tk).

What does the formula do, once again? It computes any value of f in terms of sample values.
Here are a few general comments to keep in mind:

• The sample points are spaced 1/p apart, the reciprocal of the bandwidth.1

1That sort of reciprocal phenomenon is present again in higher dimensional versions of the sampling formula. This
will be a later topic for us.
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• The formula involves infinitely many sample points, all the points k/p for k = 0,±1,±2, · · · .
So don’t think you’re getting away too cheaply, and realize that any practical implementation
can only involve a finite number of terms in the sum, so will necessarily be an approximation.

– Since a band-limited signal cannot be time-limited we should expect to have to take
samples all the way out to ±∞. However, sampling a band-limited periodic signal, i.e.,
a finite Fourier series, requires only a finite number of samples. We’ll cover this, below.

Put the outline of the argument for the sampling theorem into your head, it’s important.
Starting with a band-limited signal, there are three parts:

• Periodize the Fourier transform.

• Cut off this periodic function to get back where you started.

• Take the inverse Fourier transform.

Cutting off in the second step, a multiplication, exactly undoes periodizing in the first step, a
convolution, providing one has Ff = Πp(Ff ∗ IIIp). But taking the inverse Fourier transform swaps
multiplication with convolution and this is why something nontrivial happens. It’s almost obscene
the way this works.

Sampling rates and the Nyquist frequency The bandwidth determines the minimal sampling
rate we can use to reconstruct the signal from its samples. I’d almost say that the bandwidth is
the minimal sampling rate except for the slight ambiguity about where the spectrum starts being
identically zero (the ‘endpoint problem’). Here’s the way the situation is usually expressed: If the
(nonzero) spectrum runs from −νmax to νmax then we need

Sampling rate > 2νmax

to reconstruct the signal from its samples.
The number 2νmax is often called the Nyquist frequency, after Harry Nyquist, God of Sampling,

who was the first engineer to consider these problems for the purpose of communications. There
are other names associated with this circle of ideas, most notably E. Whittaker, a mathematician,
and C. Shannon, an all around genius and founder of Information Theory. The formula as we’ve
given it is often referred to as the Shannon Sampling Theorem.

The derivation of the formula gives us some one-sided freedom, or rather the opportunity to do
more work than we have to. We cannot take p smaller than the length of the interval where Ff is
supported, twice the bandwidth, but we can take it larger. That is, if p is the bandwidth and q > p
we can periodize Ff to have period q by convolving with IIIq and we still have the fundamental
equation

Ff = Πq(Ff ∗ IIIq).

(Draw a picture.) The derivation can then proceed exactly as above and we get

f(t) =
∞∑

k=−∞
f(τk) sincq(t − τk)

where the sample points are

τk =
k

q
.
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These sample points are spaced closer together than the sample points tk = k/p. The sampling
rate is higher than we need. We’re doing more work than we have to.

Interpolation a little more generally

Effective approximation and interpolation of signals raises a lot of interesting and general questions.
One approach that provides a good framework for many such questions is to bring in orthogonality.
It’s very much analogous to the way we looked at Fourier series.

Interpolation and orthogonality We begin with still another amazing property of sinc func-
tions – they form an orthonormal collection. Specifically, the family of sinc functions {sinc(t−n)},
n = 0,±1,±2, . . . is orthonormal with respect to the usual inner product on L2(R). Recall that
the inner product is

(f, g) =
∫ ∞

−∞
f(t)g(t)dt.

The calculation to establish the orthonormality property of the sinc functions uses the general
Parseval identity, ∫ ∞

−∞
f(t)g(t)dt =

∫ ∞

−∞
Ff(s)Fg(s)ds.

We then have
∫ ∞

−∞
sinc(t − n) sinc(t − m) dt =

∫ ∞

−∞
(e−2πisnΠ(s)) (e−2πismΠ(s))ds

=
∫ ∞

−∞
e2πis(m−n)Π(s)Π(s) ds

=
∫ 1/2

−1/2

e2πis(m−n) ds

From here direct integration will give you that this is 1 when n = m and 0 when n 6= m.
In case you’re fretting over it, the sinc function is in L2(R) and the product of two sinc functions

is integrable. Parseval’s identity holds for functions in L2(R), though we did not establish this.

Now let’s consider band-limited signals g(t), and to be definite let’s suppose the spectrum is
contained in −1/2 ≤ s ≤ 1/2. Then the sampling rate is 1, i.e., we sample at the integer points
and the interpolation formula takes the form

g(t) =
∞∑

n=−∞
g(n) sinc(t − n)

Coupled with the result on orthogonality, this formula suggest that the family of sinc functions
form an orthonormal basis for the space of band-limited signals with spectrum in [−1/2, 1/2], and
that we’re expressing g(t) in terms of this basis. To see that this really is the case, we interpret the
coefficients (the sample values g(n)) as the inner product of g(t) with sinc(t − n). We have, again
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using Parseval,

(g, sinc(t − n)) =
∫ ∞

−∞
g(t) sinc(t − n) dt

=
∫ ∞

−∞
Fg(s)F(sinc(t − n)) ds

=
∫ ∞

−∞
Fg(s)(e−2πisnΠ(s))ds

=
∫ 1/2

−1/2
Fg(s)e2πins ds

=
∫ ∞

−∞
Fg(s)e2πins ds (because g is band-limited)

= g(n) (by Fourier inversion)

It’s perfect! The interpolation formula says that g(t) is written in terms of an orthonormal
basis, and the coefficient g(n), the n’th sampled value of g(t), is exactly the projection of g(t) onto
the n’th basis element:

g(t) =
∞∑

n=−∞
g(n) sinc(t − n) =

∞∑

n=−∞
(g, sinc(t − n)) sinc(t − n).

Lagrange interpolation Certainly for computational questions, going way back, it is desirable
to find reasonably simple approximations of complicated functions, particularly those arising from
solutions to differential equations.2 The classic way to approximate is to interpolate. That is, to
find a simple function that, at least, assumes the same values as the complicated function at a given
finite set of points. Curve fitting, in other words. The classic way to do this is via polynomials.
One method, presented here just for your general background and know-how, is due to Lagrange.

Suppose we have n points t1, t2, . . . , tn. We want a polynomial of degree n − 1 that assumes
given values at the n sample points. (Why degree n − 1?)

For this, we start with an n’th degree polynomial that vanishes exactly at those points. This is
given by

p(t) = (t − t1)(t − t2) · · ·(t − tn).

Next put

pk(t) =
p(t)

t − tk
.

Then pk(t) is a polynomial of degree n − 1; we divide out the factor (t − tk) and so pk(t) vanishes
at the same points as p(t) except at tk . Next consider the quotient

pk(t)
pk(tk)

.

This is again a polynomial of degree n − 1. The key property is that pk(t)/pk(tk) vanishes at the
sample points tj except at the point tk where the value is 1:

pk(tj)
pk(tk)

=

{
1, j = k

0, j 6= k

2The sinc function may not really qualify as an ‘easy approximation’. How is it computed, really?
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the value is 1.
To interpolate a function by a polynomial (to fit a curve through a given set of points) we just

scale and add. That is, suppose we have a function g(t) and we want a polynomial that has values
g(t1), (g(t2), . . . , g(tn) at the points t1, t2, . . . , tn. We get this by forming the sum

p(t) =
n∑

k=1

g(tk)
pk(t)
pk(tk)

.

This does the trick. It is known as the Lagrange Interpolation Polynomial. Remember, unlike the
sampling formula we’re not reconstructing all the values of g(t) from a set of sample values. We’re
approximating g(t) by a polynomial that has the same values as g(t) at a prescribed set of points.

The sinc function is an analog of the pk(t)/pk(tk) for ‘Fourier interpolation’, if we can call it
that. With

sinc t =
sin πt

πt
.

we recall some properties, analogous to the polynomials we built above:

• sinc t = 1 when t = 0

• sinc t = 0 at integer points t = 0, ±1, ±2,. . . .

Now shift this and consider
sinc(t − k) =

sinπ(t − k)
π(t − k)

.

This has the value 1 at t = k and is zero at the other integers.
Suppose we have our signal g(t) and the sample points . . . , g(−2),, g(−1), g(0), g(1), g(2), . . . .

So, again, we’re sampling at evenly spaced points, and we’ve taken the sampling rate to be 1 just
to simplify. To interpolate these values we would then form the sum

∞∑

n=−∞
g(k) sinc(t − k).

There it is again – the general interpolation formula. In the case that g(t) is band-limited (band-
width 1 in this example) we know we recover all values of g(t) from the sample values.

Finite sampling for a band-limited periodic signal

We started this whole discussion of sampling and interpolation by arguing that one ought to be
able to interpolate the values of a finite sum of sinusoids from knowledge of a finite number of
samples. Let’s see how this works out, but rather than starting from scratch let’s use what we’ve
learned about sampling for general band-limited signals.

As always, it’s best to work with the complex form of a sum of sinusoids, so we consider a real
signal given by

f(t) =
N∑

k=−N

cke
2πikt/q, c−k = ck.

f(t) is periodic of period q. Recall that c−k = ck. Some of the coefficients may be zero, but we
assume that cN 6= 0.
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There are 2N + 1 terms in the sum (don’t forget k = 0) and it should take 2N + 1 sampled
values over one period to determine f(t) completely. You might think it would take twice this many
sampled values because the values of f(t) are real and we have to determine complex coefficients.
But remember that c−k = ck, so if we know ck we know c−k. Think of the 2N + 1 sample values as
enough information to determine the real number c0 and the N complex numbers c1, c2, . . . , cN .

The Fourier transform of f is

Ff(s) =
N∑

k=−N

ckδ(s −
k

q
)

and the spectrum goes from −N/q to N/q. The sampling formula applies to f(t), and we can write
an equation of the form

f(t) =
∞∑

k=−∞
f(tk) sinc p(t − tk),

but it’s a question of what to take for the sampling rate, and hence how to space the sample points.
We want to make use of the known periodicity of f(t). If the sample points tk are a fraction

of a period apart, say q/M for an M to be determined, then the values f(tk) with tk = kq/M ,
k = 0,±1,±2, . . . will repeat after M samples. We’ll see how this collapses the interpolation
formula.

To find the right sampling rate, p, think about the derivation of the sampling formula, the first
step being: ‘periodize Ff ’. The Fourier transform Ff is a bunch of δ’s spaced 1/q apart (and
scaled by the coefficients ck). The natural periodization of Ff is to keep the spacing 1/q in the
periodized version, essentially making the periodized Ff a scaled version of III1/q. We do this by
convolving Ff with IIIp where p/2 is the midpoint between N/q, the last point in the spectrum of
Ff , and the point (N + 1)/q, which is the next point 1/q away. Here’s a picture.

Thus we find p from

p

2
=

1
2

(
N

q
+

N + 1
q

)
=

(2N + 1)
2q

, or p =
2N + 1

q
.

We periodize Ff by IIIp (draw yourself a picture of this!), cut off by Πp, then take the inverse
Fourier transform. The sampling formula back in the time domain is

f(t) =
∞∑

k=−∞
f(tk) sinc p(t − tk)
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with
tk =

k

p
.

With our particular choice of p let’s now see how the q-periodicity of f(t) comes into play. Write

M = 2N + 1,

so that then
tk =

k

p
=

kq

M
.

Then, to repeat what we said earlier, the sample points are spaced a fraction of a period apart, q/M .
and after f(t0), f(t1), . . . , f(tM−1) the sample values repeat, e.g. f(tM ) = f(t0), f(tM+1) = f(t1)
and so on. More succinctly,

tk+k′M = tk + k′q,

and so
f(tk+k′M ) = f(tk + k′q) = f(tk),

for any k and k′. Using this periodicity of the coefficients in the sampling formula, the single
sampling sum splits into M sums as:

∞∑

k=−∞
f(tk) sincp(t − tk) = f(t0)

∞∑

m=−∞
sinc(pt − mM) + f(t1)

∞∑

m=−∞
sinc(pt − (1 + mM))

+f(t2)
∞∑

m=−∞
sinc(pt − (2 + mM)) + · · ·+ f(tM−1)

∞∑

m=−∞
sinc(pt − (M − 1 + mM))

Those sums of sincs on the right are periodizations of sinc pt and, remarkably, they have a
simple closed form expression. The k’th sum is:

∞∑

m=−∞
sinc(pt − k − mM) = sinc(pt − k) ∗ IIIM/p(t)

=
sinc(pt − k)

sinc( 1
M (pt − k))

=
sinc(p(t− tk))
sinc(1

q (t − tk))

I’ll give a derivation of this in Appendix 2. Using these identities, we find that the sampling formula,
to interpolate

f(t) =
N∑

k=−N

cke
2πikt/q

from 2N + 1 = M sampled values, is then

f(t) =
2N∑

k=0

f(tk)
sinc(p(t− tk))
sinc(1

q (t − tk))
, p =

2N + 1
q

, tk =
k

p
=

kq

2N + 1
.

This is the ‘finite sampling theorem’ for periodic functions.
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It might also be helpful to write the sampling formula in terms of frequencies. Thus, if the
lowest frequency is νmin = 1/q and the highest frequency is νmax = Nνmin then

f(t) =
2N∑

k=0

f(tk)
sinc((2νmax + νmin)(t − tk))

sinc(νmin(t − tk))
, tk =

kq

2N + 1
.

The sampling rate is
Sampling rate = 2νmax + νmin.

Compare this to
Sampling rate > 2νmax

for a general band-limited function.

Here’s a simple example of the formula. Take f(t) = cos 2πt. There’s only one frequency, and
νmin = νmax = 1. Then N = 1, the sampling rate is 3 and the sample points are t0 = 0, t1 = 1/3
and t2 = 2/3. The formula says

cos 2πt =
sinc 3t

sinc t
+ cos

2π

3
sinc(3(t − 1

3))
sinc(t − 1

3)
+ cos

4π

3
sinc(3(t − 2

3))
sinc(t − 2

3)

Does this really work? I’m certainly not going to plow through the trig identities needed to check
it! However, here’s a Mathematica plot of the right hand side.

Any questions? Ever thought you’d see such a complicated way of writing cos 2πt?

Appendix 1: Time-limited vs band-limited signals

Here’s a more careful treatment of the result that a band-limited signal cannot be time-limited,
We’ll actually prove a more general statement and perhaps I should have said that no interesting
signal can be both time-limited and band-limited, because here’s what we’ll show precisely:
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• Suppose f(t) is a band-limited signal. If there is some interval a ≤ t ≤ b on which f(t) is
identically zero then f(t) is identically zero for all t.

This is a tricky argument. f is band-limited so Ff(s) is zero, say, for |s| ≥ p/2. The Fourier
inversion formula says

f(t) =
∫ ∞

−∞
Ff(s)e2πist ds =

∫ p/2

−p/2
Ff(s)e2πist ds.

(We assume the signal is such that Fourier inversion holds. You can take f to be a Schwartz
function, but some more general signals will do.) Suppose f(t) is zero for a ≤ t ≤ b. Then for t in
this range, ∫ p/2

−p/2
Ff(s)e2πist ds = 0.

Differentiate with respect to t under the integral. If we do this n-times we get

0 =
∫ p/2

−p/2
Ff(s)(2πis)ne2πist ds = (2πi)n

∫ p/2

−p/2
Ff(s)sne2πist ds,

so that ∫ p/2

−p/2
Ff(s)sne2πist ds = 0.

Again, this holds for all t with a ≤ t ≤ b; pick one, say t0. Then

∫ p/2

−p/2

Ff(s)sne2πist0 ds = 0.

But now for any t (anywhere, not just between a and b) we can write

f(t) =
∫ p/2

−p/2
Ff(s)e2πist ds

=
∫ p/2

−p/2

Ff(s)e2πis(t−t0)e2πist0 ds

=
∫ p/2

−p/2

∞∑

n=0

(2πi(t− t0))n

n!
sne2πist0Ff(s) ds

(using the Taylor series expansion for e2πis(t−t0))

=
∞∑

n=0

(2πi(t− t0))n

n!

∫ p/2

−p/2
sne2πist0Ff(s) ds = 0

Hence f(t) is zero for all t.
The same argument mutatis mutandis will show:

• If f(t) is time-limited and if Ff(s) is identically zero on any interval a ≤ s ≤ b then Ff(s)
is identically zero for all s.

Then f(t) is identically zero, too, by Fourier inversions.
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Remark 1, for eager seekers of knowledge This band-limited vs time-limited result is
often proved by establishing a relationship between time-limited signals and analytic functions (of
a complex variable), and then appealing to results from the theory of analytic functions. That
connection opens up an important direction for applications of the Fourier transform, but we can’t
go there and the direct argument we just gave makes this approach unnecessary.

Remark 2, for overwrought math students and careful engineers Where in the pre-
ceding argument did we use that p < ∞? It’s needed in switching integration and summation, in
the line

∫ p/2

−p/2

∞∑

n=0

(2πi(t− t0))n

n!
sne2πist0Ff(s) ds =

∞∑

n=0

(2πi(t− t0))n

n!

∫ p/2

−p/2

sne2πist0Ff(s) ds

The theorems that tell us ‘the integral of the sum is the sum of the integral’ require as an essen-
tial hypothesis that the series converges uniformly. ‘Uniformly’ means, loosely, that if we plug a
particular value into the converging series we can estimate the rate at which the series converges
independent of that particular value.3 In the sum-and-integral expression, above, the variable s

ranges over a finite interval, from −p/2 to p/2. Over such a finite interval the series for the ex-
ponential converges uniformly, essentially because the terms can only get so big – so they can be
estimated uniformly – when s can only get so big. We can switch integration and summation in
this case. If, however, we had to work with

∫ ∞

−∞

∞∑

n=0

(2πi(t− t0))n

n!
sne2πist0Ff(s) ds,

i.e. if we did not have the assumption of band-limitedness, then we could not make uniform
estimates for the convergence of the series and switching integration and summation is not justified.

It’s not only unjustified, it’s really wrong. If we could drop the assumption that the signal is
band-limited we’d be ‘proving’ the statement: If f(t) is identically zero on an interval then it’s
identically zero. Think of the implications of such a dramatic statement. In a phone conversation
if you paused for a few seconds to collect your thoughts your signal would be identically zero on
that interval of time, and therefore you would have nothing to say at all, ever again. Be careful.4

Appendix 2: Periodizing sinc functions

In applying the general sampling theorem to the special case of a periodic signal we wound up with
sums of sinc functions which we recognized (sharp eyed observers that we are) to be periodizations.
Then, out of nowhere, came a closed form expression for such periodizations as a ratio of sinc
functions. Here’s where this comes from, and here’s a fairly general result that covers it.

Lemma Let p, q > 0 and let N be the largest integer strictly less than pq/2. Then

∞∑

k=−∞
sinc(pt − kpq) = sinc(pt) ∗ IIIq(t) =

1
pq

sin((2N + 1)πt/q)
sin(πt/q)

.

3We can make ‘uniform’ estimates, in other words. We saw this sort of thing in the notes on convergence of Fourier
series.

4However, if f(t) is a real analytic signal, that is if it is given by a convergent power series at each point in its
domain, then the implication: ‘f(t) identically zero on an interval =⇒ f(t) identically zero everywhere’ is true.
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There’s a version of this lemma with N ≤ pq/2, too, but that’s not important for us. In terms of
sinc functions the formula is

sinc(pt) ∗ IIIq(t) =
2N + 1

pq

sinc((2N + 1)t/q)
sinc(t/q)

.

It’s then easy to extend the lemma slightly to include periodizing a shifted sinc function, sinc(pt+b),
namely

∞∑

k=−∞
sinc(pt + b − kpq) = sinc(pt + b) ∗ IIIq(t) =

2N + 1
pq

sinc(2N+1
pq (pt + b))

sinc( 1
pq(pt + b))

This is what is needed in the last part of the derivation of the finite sampling formula.

Having written this lemma down so grandly I now have to admit that it’s really only a special
case of the general sampling theorem as we’ve already developed it, though I think it’s fair to say
that this is only ‘obvious’ in retrospect. The fact is that the ratio of sine functions on the right
hand side of the equation is a band-limited signal (we’ve seen it before, see below) and the sum for
sinc(pt) ∗ IIIq(t) is just the sampling formula applied to that function. One usually thinks of the
sampling theorem as going from the signal to the series of sampled values, but it can also go the
other way. This admission notwithstanding, I still want to go through the derivation, from scratch

One more thing before we do that. If p = q = 1, so that N = 0, the formula in the lemma gives

∞∑

n=−∞
sinc(t − n) = sinc t ∗ III1(t) = 1.

Striking. Still don’t believe it? Here’s a plot of

100∑

n=−100

sinc(t − n).

Note the Gibbs-like phenomena at the edges. This means there’s some issue with what kind of
convergence is involved, which is the last thing I want to worry about.

We proceed with the derivation of the formula

sinc(pt) ∗ IIIq(t) =
1
pq

sin((2N + 1)πt/q)
sin(πt/q)
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This will look awfully familiar, indeed I’ll really just be repeating the derivation of the general
sampling formula for this special case. Take the Fourier transform of the convolution:

F(sinc(pt) ∗ IIIq(t)) = F(sinc(pt)) · F IIIq(t)

=
1
p
Πp(s) ·

1
q
III1/q(s)

=
1
pq

N∑

n=−N

δ(s − n

q
) (see the figure, below).

And now take the inverse Fourier transform:

F−1

(
1
pq

N∑

n=−N

δ(s − n

q
)

)
=

1
pq

N∑

n=−N

e2πint/q

=
1
pq

sin(π(2N + 1)t/q))
sin(πt/q)

.

There it is. One reason I wanted to go through this is because it is another occurrence of the sum
of exponentials and the identity

N∑

n=−N

e2πint/q =
sin(π(2N + 1)t/q))

sin(πt/q)

which we’ve now seen on at least two other occasions. Reading the equalities backwards we have

F
(

sin(π(2N + 1)t/q))
sin(πt/q)

)
= F

(
N∑

n=−N

e2πint/q

)
=

N∑

n=−N

δ(s − n

q
).

This substantiates the earlier claim that the ratio of sines is band-limited, and hence we could have
appealed to the sampling formula directly instead of going through the argument we just did. But
who would have guessed it?
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