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ABSTRACT 
 

 

 

Signals when pass through a channel undergo various forms of distortion, most 

common of which is Inter-symbol-interference, so called ISI. Inter-symbol 

interference induced errors can cause the receiver to misinterpret the received 

samples. Equalizers are important parts of receivers, which minimizes the linear 

distortion produced by the channel. If channel characteristics are known a priori, then 

optimum setting for equalizers can be computed. But in practical systems the channel 

characteristics are not known a priori, so adaptive equalizers are used. Adaptive 

equalizers adapt or change the value of its taps as time progresses. There are two main 

types of adaptive equalizers, trained equalizers and blind equalizers. In trained 

equalizers there is a pseudo-random pattern of bits called training sequence known 

both to receiver and transmitter. But equalizers for which such a initial training period 

can be avoided are called BLIND EQUALIZERS. Blind equalizer as opposed to data 

trained equalizer, is able to compensate amplitude and delay distortion of a 

communication channel using only channel output sample and knowledge of basic 

statistical properties of the data symbol. Among some algorithms of blind equalizers 

like CMA, Stop and Go, GSA, SGA, SRCA etc., Stop and Go is one of the most 

important algorithms. Unfortunately all blind equalizers converge very slowly. So 

there is a proposed method for automatic control of step size and filter length for a 

blind equalizer which is driven by stop and go directed algorithm. This idea was 

presented by Krzysztof Wesolowski in his paper “Adaptive Blind Equalizers With 

Automatically Controlled Parameters”. This proposed method for varying the step 

size results substantial shortening of the convergence time. 
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1.  INTRODUCTION: 
 

A Blind Equalizer, as opposed to a data-trained equalizer, is able to compensate 

amplitude and delay distortions of a communication channel using only the channel 

output samples and the knowledge of the basic statistical properties of the data 

symbols. Among a few adaptation algorithms developed so far, the stop and go 

algorithm [1] is one of the most important. Unfortunately, all realizable, gradients –

type blind algorithms converge very slowly. One of the simplest ways to increase the 

convergence speed of a blind algorithm is to apply a sequence of gradually decreasing 

adaptation steps which better fit the current state of the convergence process than the 

constant step size [2]. Recently usefulness of controlling the length of  transversal 

equalizer resulting in increasing of the convergence speed has been discovered [3] and 

analyzed [4]. The same idea was also briefly mentioned in [5], however, without any 

explanation.  
 

2.  ADAPTIVE EQUALIZATION: 
 

In digital communications, a considerable effort has been devoted to the study of data 

transmission system that utilizes the available channel bandwidth efficiently. The 

objective here is to design a system that accommodates highest possible rate of data 

transmission, subject to a specified reliability that is usually measured in terms of the 

error rate or average probability of symbol error. The transmission of digital data 

through a linear communication channel is limited by two factors.  

1- Inter Symbol Interference. (ISI) 

2- Thermal noise 

ISI is caused by dispersion in the transmit filter, the transmission medium, and receive 

filter. The receiver at its front end generates thermal noise. For bandwidth-limited 

channels (e.g., voice-grade telephone channels), we usually find that inter symbol 

interference is the chief determining factor in the design of high data rate 

Transmission  systems. 
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Block diagram in Figure shows the equivalent base band model of binary pulse-

amplitude modulation (PAM) system. The signal applied to the input of the 

transmitter part of the system consists of binary data sequence, in which each symbol 

consists of 1 or 0. This sequence is applied to the pulse generator, the output of which 

is filtered first in the transmitter, then by the medium, and finally in the receiver. Let 

u(k) denote the sampled output of the receiver filter in the block diagram; the 

sampling is performed in synchronism with the pulse generator in the transmitter. The 

output is compared with a threshold by means of a decision device. If the threshold is 

exceeded, the receiver makes a decision in favor of symbol 1. Otherwise it decides in 

favor of symbol 0 

Let ka  be a scaling factor defined by, 

ka =  { +1  if the input consists of symbol 1 

                   -1   if the input consists of symbol 0  } 

 

Then in the absence of thermal noise, we may express  

                                ( )ku  = ∑
n

na  ( )nkp −  

                      = ka  ( )0p  + ∑
n

na ( )nkp −                              ( )0≠n  

where ( )np  is the sampled version of the impulse response of the cascaded 

connection of the transmitter filter, the transmission medium, and the receiver filter. 

The first term of the right hand side of equation (1) defines the desired symbol, 

whereas the remaining series represents the inter symbol interference caused by the 

channel. The inter symbol interference, if left unchecked, can result erroneous 
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decisions when the sampled signal at the channel output is compared with some pre 

assigned threshold by means of decision device.  

 

To overcome the ISI, control of the time-sampled function ( )np  is required. In 

principle, if the characteristics of the transmission medium are known precisely, then 

it is virtually always possible to design a pair of transmit and receive filters that will 

make the effect of inter-symbol-interference (at sampling times) arbitrary small. But 

the use of a fixed pair of transmit and receive filters, designed on the basis of average 

channel characteristics, may not adequately reduce the ISI. This suggests the need for 

an  “Adaptive Equalizer” that provides precise control over the time response of the 

channel.  

 

Among the basic philosophies for equalization of data transmission systems are pre 

equalization at the transmitter and pre equalization at the receiver. Since the former 

technique require the use of feed` back path, we will only consider equalization at the 

receiver, where the adaptive equalizer is placed after the receive filter.  In theory, the 

effect of ISI may be made arbitrary small by making the number of adjustable 

coefficients (tap weights) in the adaptive equalizer infinitely large. 

An adaptive filtering algorithm requires the knowledge of the “desired” response so as 

to form the error signal needed for adaptive process to function. In theory, the 

transmitted sequence (originating at the transmitter output) is the “desired” response 

for the adaptive equalization. In practice, however, with the adaptive equalizer located 

at the receiver, the equalizer is physically separated from the origin of its ideal desired 

response.  

One method to generate the desired response locally in the receiver is the use of 

training sequence, in which a replica of the desired response is stored in the receiver. 

Naturally the generator of this stored reference has to be electronically synchronized 

with the known transmitted sequence. With a known training sequence, the adaptive 

filtering algorithm used to adjust the equalizer coefficients corresponds 
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mathematically to searching for the unique minimum of quadratic error-performance 

surface.  

Second method is decision directed method, in which, a good facsimile of the 

transmitted sequence is being produced at the output of the decision device in the 

receiver. Accordingly, if this output were the correct transmitted sequence, it may be 

used as the “desired” response for the purpose of Adaptive Equalization. 

Channel Input
Receiver
Output

Channel Equalizer Decision
Device

RECIEVER

Channel
Output

 

Channel Equalization in a Data Communication System 

 

3. BLIND EQUALIZATION: 

Blind Equalization perform channel equalization without the aid of a training 

sequence. The term blind is used because the equalizer performs the equalization 

blindly on the data without a reference signal. Instead the blind equalizer relies on the 

knowledge of signal’s structure and its statistics to perform the equalization. The 

major advantage of blind equalizers is that there is no training sequence at the start up, 

hence no bandwidth is wasted by its transmission. The major drawback is that the 

equalizer will typically take a longer to converge as compared to a trained equalizer. 

The need for blind equalizers in the field of data communications is greatly discussed 

by Godard[2], in the context of multipoint networks. Blind joint equalization and 

carrier recovery may also find application in digital radio link over multipath fading 
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channels. Moreover, in highly non stationary environments like digital mobile 

communications, it is impractical to use training sequences. Furthermore, application 

of blind equalization is also important, in other areas, such as geographical signal 

processing. 

3.1   QAM SIGNALS 

Suppose in a typical communication system, if the data rate is 32kb/s, and the 

signaling rate is 16kb/s, than every bit transmitted must carry two bits of information. 

This mean that we must have four points on the constellation, and clearly this can be 

done in many ways. Figure shows some four points constellation. 
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The two bits of information associated with each constellation point are marked on the 

figure. In part (a) and (b) so called quadrature modulation has been used as the points 

can only be uniquely described using two orthogonal coordinate axes, each passing 

through the origin. The orthogonal coordinate axes have a phase rotation of 90 

degrees with respect to each other, and hence they have so called quadrature 

relationship. The pair of coordinate axes can be associated with a pair of quadrature 

carriers, normally have a sine and cosine waves, which can be independently 

modulated and than transmitted within the same frequency band. Due to their 

orthogonality  they can be separated by the receiver. This implies that whatever 

symbol is chosen on one axis it will have no effect on the demodulated on the y axis. 

Data can therefore be independently transmitted via these two quadrature or 

orthogonal channels without any increase in error rate. For the constellation of part (a) 

and (b) we have a constant amplitude signal, but the carrier phase values at the 

beginning of each symbol period in figure (b) would be either 45 deg, 135 deg, 225 

deg or 315 deg. These are two magnitude values and two phase values for the 

constellations in figure (c) and (d). In general, grouping n bits into one signaling 

symbol yields 2n constellation points, which are often referred to as phasors, or 

complex vectors.   
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3.2   BLIND EQUALIZATION IN "QAM" DATA   

TRANSMISSION  SYSTEMS 
 

A typical QAM (Quadrature amplitude modulated) data transmission system consists 

of transmitter, a channel, and a receiver, where the unknown channel represents all the 

interconnections between the transmitter and the receiver. The transmitter generates a 

zero mean, independent input data sequence { ka }, each element of which comes from 

a finite alphabet A of the QAM symbols (or constellation). The data sequence { ka } is 

sent through the channel whose output { kx } is the receiver input. The function of the 

receiver is to restore the original data { ka } from the observation { kx } by outputting a 

sequence of estimate { ka }. 

Assume the channel is linear, causal, and (BIBO) stable with transfer function 

( )1−qH . Its input-output relation can be written as  

( )1−qH × ka  = ikii
ah −

∞

=
×∑ 0

 ,      ∆⊂∈− Aa ik ,  ∆∈ih  

such that more than one non-zero element exists in Where { ih } is the impulse 

response of the channel. When the channel is ideal with no ISI such that only one non-

zero element exists in the sequence  { ih }, then the channel output becomes 

kx  = vkv ah −×    ,           ,0≠vh      +Ζ∈v  

Which is simply the scaled version of the input with finite delay v . In this ideal case, 

the original sequence can be recovered by removing the constant scaling factor 

through an appropriate memory less nonlinear decision device. The difficulty arises 

when the channel is imperfect such that more than one non-zero element in the 

channel impulse response. In this case an undesirable ISI is introduced at the channel 

output from which a simple memory less decision device might not be able to recover 

the original data sequence.  

A linear channel equalizer is a linear filter ( )1−qG  applied to the channel output to 

eliminate its ISI by essentially canceling the channel dynamics. All the ISI is removed 

if 
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( )1−qG  ( )1−qH  = vcq−  ,  0 ∆∈≠ c   , +Ζ∈v  

such that the equalizer output becomes vkk caz −= .  The desired response can be 

rewritten as 

( )1−qG  = vcq −  [ ( )1−qH  ] -1, 

 

Which means that the equalizer attempts to achieve the inverse of the channel transfer 

function with a possible gain difference and/or a constant time delay.  

In blind equalization, the original sequence is unknown to the receiver except for its 

probabilistic or statistical properties over the known alphabet A . Based on the 

second-order statistics of the input and output signal of the channel, the spectral 

magnitude of the channel can be determined and so that of the channel inverse. Thus 

if the channel is known to be of minimum or maximum phase, only second order 

statistics need to be used to identify ( )1−qH , with which one can construct, 

respectively, a truncated causal or an anticausal inverse of the channel using an FIR 

Equalizer. Unfortunately, communication channels usually have mixed phase. Hence, 

the blind equalization problem for general channels cannot be solved through schemes 

that only use second order statistics. If the input sequence is gaussian, so is the output. 

Therefore, only second order statistics are useful if the input is gaussian which means 

that blind equalization is unattainable for gaussian input with mixed-phase channels.  

 

      In summary, the following facts about the blind equalization are generally noted. 

   

• A mixed-phase linear dynamical channel is identifiable from its output (and 

knowledge of the distribution of its input) only when the input is not gaussian. 

• Second order statistics alone are generally insufficient for blind equalization.  

• No channel transfer function zeros are allowed on the unit circle, since 

spectral nulls require a linear equalizer with infinite gain to compensate. 

• An exact causal inverse of a nonminimum-phase channel is unstable. However 

an anticausal representation can be truncated and delayed with a finite delay 

v  to enable a causal equalizer to approximate the desired response. 
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• Most practical QAM systems employ a constellation, which has symmetrical 

properties. If the input data is independent and uniformly distributed over 

constellation, a 2/πk  phase rotation does not cause any statistical changes in 

the channel output. Thus the data recovered from blind equalization will be 

subjected to a phase ambiguity of  2/πk , and the best possible result would 

be  

                     

( )1−qG ( )1−qH  = vk qe −2/π  , }3,2,1,0{∈k  

Thus remaining phase ambiguity can be resolved through differential encoding. 

 

3.3 BLIND EQUALIZATION ALGORITHMS 
 

Sato was the first who introduced the idea of blind equalization for multilevel pulse 

amplitude modulation, and after it Godard combined Sato idea with a Decision 

Directed algorithm and obtain a new blind equalization scheme for QAM data 

transmission. Sato proposed algorithm which was designed only for real valued signal 

and PAM. However, its complex valued extension is straightforward which was 

derived by Godard. 

 

I) Sato Algorithm 

Sato algorithm dedicated to real valued signal z(n), which uses the following cost 

function: 

J(n) = E [ ( z(n)  - γ )2  ] 

Where γ is the sato’s  coefficient and z(n) is the equalizer output. Sato’s coefficient 

update equation is given as: 

C(n+1)  = C(n) – µ. y∗(n). εsato(n) 

Where εsato(n) is the Sato’s error defined as: 

εsato(n) = z(n) – γ csgn(z(n)) 

so taps of equalizer are updated according to the equation defined above. As it can be 

seen from above equation, this algorithm uses only the sign of equalized output values 

z(n) in order to update equalizer coefficients C(n). Setting the value of γ in above 
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equation is very important, since it actually directs the signal z(n) to the point of its 

convergence that is to the original constellation points. The optimum value of γ set by 

Sato in order to achieve minimum MSE  is given by: 

γ =  E [ a(n)  2 ]   /   E [ abs( a(n) ) ] 

which is only for real valued signals, where a(n) is the signal to be transmitted. A 

typical equalization scheme looks like: 

CHANNEL
hi

EQUALIZER
Ci

DECEISIO
N

DEVICE
+

a(n)

e(n)

y(n) z(n) dec(a(n))

EQUALIZED COMMUNICATION SYSTEM
 

 

II) Constant Modulus Algorithm (CMA) 

Godard algorithm which he developed for complex valued signal is the most popular 

scheme for blind equalization of QAM  signals. The CMA attempts to minimize the 

constant modulus cost function JCM. CMA adjust the taps of equalizer in an attempt to 

minimize the difference between samples squared magnitude and Godard dispersion 

constant R2, which depends only on input data symbols { ka }. So value of JCM  

depends on difference between squared magnitude of received samples z(n) and the 

Godard dispersion constant γ. 

JCM  =  E [ ( abs( z(n) )2 – R2 )2 ] 

 Where z(n) is the equalizer output at time n. The equalizer coefficient update 

equation in CMA uses a gradient descent to minimize JCM. The equation is given by 

Godard as, 

C(n+1) =  C(n)  - µ .y∗(n). z(n). [ (abs( z(n) )2 – R2 ] 

Where in order to find out the value of R2, Godard uses the exactly same method as 

used by Sato, to obtain the value of R2, 

R2 =  E [ a(n)  4]   /   E [ abs( a(n) )2 ] 
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III) Modified Constant Modulus Algorithm (CMA) 

Another modified version of Godard’s CMA was proposed by Wesolowsky, 

employing a cost function, which relies on both the real and imaginary parts of the 

equalized signal z(n). 

J(n) = E [  (abs( Re{z(n)} )2 – R2,R )2 +  (abs( Im{z(n)} )2 – R2,I )2 ] 

The idea behind this cost function, as compared to the CMA cost function, is that both 

the real and imaginary parts of the signal are forced to a constant value and, therefore, 

the random phase ambiguity of CMA now becomes only 90 degrees. This is 

meaningful in a pure phase modulation, in which case the CMA may converge to an 

arbitrary phase shifted solution. For QAM though, the 90 degree symmetry of the 

constellation make it possible for both algorithm to converge to a 90 degree phase 

shifted solution. Now here the coefficient update equation is: 

C(n+1) = C(n)  - λ y(n). [Re(z(n)).((Re(z(n))2 –R2,R) + j Im(z(n)).((Im(z(n))2 –R2,I)]. 

The values of R2,R and R2,I can be calculated by exactly the same method as used by 

Sato and Godard in their algorithms. 

R2,R =  E [Re( a(n))  4]   /   E [ Re( a(n) )2 ] 

R2,I =  E [Im( a(n) ) 4]   /   E [ Im( a(n) )2 ] 

Wesolowsky also showed that the MCMA exhibits slightly faster convergence than 

the classical CMA, in particular for medium distortion channels. He also showed that 

his algorithm offers slightly better steady state performance. 

 

4    STOP AND GO" DECISION DIRECTED ALGORITHM FOR  

BLIND EQUALIZATION 
 

`In my term paper, I am using "STOP AND GO" decision directed algorithm, 

proposed by GIORGIO PICCHI and GIANCARLO PRATI, which is not based on 

the knowledge of complex output error ne . 

The term “STOP AND GO” indicates that every time, tap coefficients are not adapted, 

instead the reliability of error is checked and then the algorithm decides either the tap 

coefficients should be adapted or not. It is worth exploring the possibility of retaining 

the advantages of simplicity and smoothness of the decision directed algorithm while 

attempting to substantially improve its blind convergence capabilities. The basic idea 
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in the paper of picchi prati was that this possibility could be achieved by stopping 

adaptation when the reliability (in a probabilistic sense) of the self-decided output 

error is not high enough.  More precisely an easy to generate “binary-valued flag” 

tells the equalizer whether the output error on the current decision may be reliably 

used in the standard Decision Directed algorithm. If not, adaptation is stopped for that 

iteration.  

The stop and go operation made of the standard DD algorithm is an attractive solution 

of the problem of blind joint equalization and carrier recovery. As a matter of fact, 

this algorithm has been successfully implemented and tested in a new commercial 64-

QAM digital radio system.  

 In this algorithm, two SATO-like errors 

nnnn RyRyRe β−= ),(sgn,,~  

nnnn IyIyIe β−= ),(sgn,,~  

are generated.  

where Ryn , and Iyn , are the real and imaginary components of the output of the 

equalizer. nβ  being a suitable real value possibly changing with n , and used to 

determine on which  intervals of Ry and Iy  axes, the error on the decided symbol may 

be used for adaptation. More specifically, the DD Algorithm now uses the following 

binary-valued flags. 

=Rfn , { 1      if  ReRe nn ,~sgn,sgn =
∧

 

                    0      if   ReRe nn ,~sgn,sgn ≠
∧

 

=If n , {1         if    IeIe nn ,~sgn,sgn =
∧

 

          0      if   IeIe nn ,~sgn,sgn ≠
∧

 

 

where 
∧

ne  is the estimated error, determined by the relation. 

),ˆ,(),ˆ,( IdIyjRdRye nnnnn −+−=
∧
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Note that nd̂ is the decision made in each interval that our output of equalizer ny is 

nearest to which one signal in the given 64-QAM-signal constellation. 

When the event { ReRe nn ,~sgn,sgn =
∧

} occurs and the choice of nβ  is proper, the 

conditional error probability, 

 

RePgoerrornoPP ngon ,ˆ{sgn}|_{/ ==  

         = ReReRe nnn ,~sgn,ˆsgn|,sgn = } 

                              IeIeIeIeP nnnn ,~sgn,ˆsgn|,sgn,ˆ{sgn === } 

is sufficiently high, and Ren ,sgn
∧

may be confidently used in the DD Algorithm. The 

two flags Rfn ,  and If n , therefore restrict operation of algorithm to a region of 

higher reliability. It can be shown that by a direct measure of some performance 

parameters, a proper choice of nβ  can be made, favorable on the average. Therefore 

nβ  is used as a reference point to identify regions on each axis where Ren ,
∧

 and Ien ,
∧

 

may be used more confidently. The conditional error probability gonp /  and its 

complement gonq /  = −= 1}|{ goerrorP gonp /  corresponds in a sense to np  and nq . 

The performance related to the probabilities is better than all other algorithms. 

 

RePgoerrornoPp ngon ,ˆ{sgn}|_{/ ==  

                                  = ,,sgn,ˆ{sgn}1,,,sgn ReRePRfRe nnnn ===  

             nscnn ppReRe )1(},~sgn,ˆsgn. −==  

 

RePgoerrorPq ngon ,ˆ{sgn}|{/ ==  

        ≠ ,,sgn,ˆ{sgn}1,,,sgn ReRePRfRe nnnn ≠==  

nsenn qpReRe )1(},~sgn,ˆsgn. −==  
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A proper choice of nβ  causes gonq /  to be sufficiently smaller than DDnq / , that is, 

adaptation stops with probability sep  when a sign error occurs for a component of nê . 

This makes the Decision Directed Algorithm converge. 

For the baud-rate feed forward linear equalizer adopting the stop-and-go algorithm, 

the filter coefficient update equation is given as 

*)()()1( nencnc SG+=+  

where α  is the adaptation step size, )](....),........(),(),([)( 1210 ncncncncnc N
T

−=  is the 

coefficient vector, )]1(),....,1(),([)( +−−= NnxnxnxnxT  is the input vector, )(ne SG , 

produced by processing the equalizer output )(ny , is the error signal at time n , and 

N is the number of equalizer tap coefficients. 

The stop and go Algorithm uses the Decision Directed algorithm (DD) error signal 

and allows coefficient updates only when the DD error signal is considered to be 

reliable.  

The DD error signal is given by 

)(ˆ)()(ˆ ndnyne −=  

where )(ˆ nd is the decision made on the data symbol )( Dna −  from )(ny  and D is the 

overall propagation delay of the channel and the equalizer. A method of judging the 

reliability of the DD error signal is to see whether the sign of the DD error coincides 

with a sato-like error  

))](sgn())([sgn()()(~ nyIjnyRnyne SG +β−=  

where R  and I denotes the Real and Imaginary components of the Equalizer output 

)(ny  and SGβ  is a suitable real value chosen depending upon the data constellation. 

Hence the real and imaginary parts of the error signal for the stop and go algorithm 

are given as follows 

)(ˆ)()( nenfne SG
γγγ =  ,       for   RI ,=γ  (i.e.  indicating Real and Imaginary parts) 

where   {)( =nfγ  1,    if ))(ˆsgn())(~sgn( nene γγ =  

0,     otherwise             RI ,=γ  
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5.  THE CONTROLLED LENGTH BLIND EQUALIZER 

 

It has been proven [6] that the step size of the regular gradient algorithm applied to 

the reference data-trained equalizer is inversely proportional to the equalizer length. 

The longer the equalizer, the smaller is the step size required to ensure the stability of 

the algorithm, which in turn lengthens the convergence time. The shorter the equalizer 

converges faster but the residual mean square error is higher. One can also observe 

that after convergence, the main proportion of the energy of the equalizer’s 

coefficients is usually concentrated around the main tap. Thus, through the adjustment 

of the few coefficients in the middle of the equalizer, a rough equalization is achieved. 

It [3] has been shown that such a simple idea leads to a large reduction of the 

convergence time especially when the stop and go blind algorithm is applied. 

Unfortunately, the optimum moment of switching depends on particular channel 

characteristics. It would also be desirable if the equalizer could change its length and 

quickly recover its coefficients when the channel suddenly changes. Thus, the 

automatic switching of the equalizer length and the related step size is a very desirable 

feature even at the cost of some convergence slowdown as compared with the case 

when the step size and the moment of changing is best matched to a particular 

channel.  
 

6.  AUTOMATIC CONTROL OF EQUALIZER PARAMETERS 

(USING STOP-AND-GO ALGORITHM) 

 

An ad hoc method of controlling the equalizer’s length and its step size is proposed 

below for the stop and go blind algorithm, which is particularly well suited for our  

purpose. Below are the equations of the algorithm 

 

 

)(ˆ)()(ˆ ndnyne −=  

∑ −=
−=

N

Ni
i inxncny )().()(
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where   ))(()(ˆ nydecnd =  

)())].(ˆIm(.))(ˆRe([)()1( * inxnefjnefncnc I
n

R
nn

ii −+−=+ γ  

       for NNi +−= ..,.........  

where R
nf and I

nf  are the On and Off coefficients  (described in the paper of  Picchi 

and Prati) .    )(nci  are the equalizer’s coefficients and )( inx −  is the input signal 

contained in the tapped delay line of the equalizer on the ith  position . Function 

))(()(ˆ nydecnd =  described the operation of a decision device, which generates the 

output as the signal constellation point closest in the Euclidean sense to the signal 

)(ny .  One can easily note that the magnitude of the output error )(ˆ ne  can be 

considered as a measure of how far the coefficients are located from their optimum. 

One can appropriately select the area around each signal point on the signal 

constellation plane. If the subsequent equalizer output signals )(ny  fall into these 

areas, one can expect that rough equalization have already been achieved. For a 

square QAM signal constellation when )Re( nd  and )Im( nd  belong to the set 

)}12(.....,,.........5,3,1{ −±±±± m  and )12( −m  is the largest in phase or quadrature data 

symbol component, the area of the thi −  constellation point can be defined as follows. 

iDny ∈)(     if and only if 

∆≤− |)Re())(Re(| idny     and       ∆≤− |)Im())(Im(| idny    (Condition 1) 

where ∆ is properly selected constant. Because the distance of the data symbol In-

phase or Quadrature component to the nearest threshold is equal to one. Obviously 

∆<1. 
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Thus      if    iDny ∈)(            then                INN =  and    In γγ =                                            

                                            Otherwise        2NN =    and    2γγ =n  

where INN >1    ,   21 γγ <      and  12 +IN  is the full length of the equalizer. The same 

procedure can be applied to control the step size only. Thus NNN == 21 . No general 

theory on the selection of the step size for a blind equalizer algorithm exists so 

researchers usually resort to the simulation experiments. Generally the step size 

2γ should ensure stable operation of the short or full-length equalizer at the beginning 

of the convergence process and 1γ should be selected with respect to the low excess 

error in the steady state. The step size 2γ is kept usually much smaller than that 

derived by Ungerboeck [6] by the relation 

]),|[|)12/((1 2
10 nxEN +=γ  

where 2|[| nxE  is the mean input signal power. The above equation gives the 

optimum initial step size for the gradient adjustment of the data trained equalizer.  

Because the event iDny ∈)( has a probabilistic character turning the adaptation of the 

shorter or longer equalizer on and off and / or higher or lower step size on and off, 

will not be smooth. A single event iDny ∈)( can already switch the adaptation of the 

longer equalizer on, although the equalizer can be far away from rough equalization 

of the channel. To protect it accidental turning the adaptation of the longer equalizer 

on, the algorithm can monitor a few recent values of the output error )(ˆ ne . A very 

simple monitoring method is proposed which can be implemented.  
 

7.  SIMULATION RESULTS 
 

The operation of a blind transversal equalizer with automatically controlled length and 

step size of the stop and go algorithm was verified using a simulation experiment. 

The channel reported by G. Picchi and G. Prati in [1] was applied in our simulations.  

Transmissions using 64-QAM modulations  

1{)Im(),Re( ±∈nn dd  , 3±  , 5±  , }7±  



 

 

21

 

was simulated. The additive gaussian noise samples were added on the output of the 

channel.  

SNR = 30 dB , 

,42]|[| 2 =nxE  

  

 

Figure 1 (CONSTANT STEP SIZE AND LENGTH OF EQUALIZER) 

Shows the Equalized 64-Qam Constellation and curve for Mean Square Error versus 

iteration number for the constant length and step size of  4105 −×=γ n . Constant 

length means that all the tap coefficients are adapted . For this case length of the 

equalizer is taken to be 15. 
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Figure 2  (VARIABLE STEP SIZE AND CONSTANT LENGTH OF EQUALIZER) 

Shows the algorithm with the variable step size i.e. 
4105 −×=γ n    when condition (1) 

∆≤− |)Re())(Re(| idny     and       ∆≤− |)Im())(Im(| idny           (Condition 1) 

with 75.=∆   is fulfilled. 
3101 −×=γ n             otherwise. 
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Figure 3   (CONSTANT STEP SIZE AND VARIABLE LENGTH OF EQUALIZER) 

Shows the algorithm for the equalizer with automatically controlled length when 

condition (1) 

∆≤− |)Re())(Re(| idny     and       ∆≤− |)Im())(Im(| idny           ____      (1) 

with 75.=∆  is fulfilled. If the above condition is fulfilled, then all the tap coefficients 

are adapted; otherwise only five tap coefficients around the main one are adapted.  
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AUTOMATIC LENGTH CONTROL 

 

 

It is to be clear that variable length equalizer means that the number of tap 

coefficients, which are adapted, varies. Switching between adaptations of all taps 

coefficients or a part of them is performed. 

From figure 3, the influence of the automatic length control on the convergence 

speed of the constant step size equalizer was investigated. The full length of the 

equalizer is taken to be 15. All the equalizers are adapted with the same step size of 
4105 −×=γ n , which ensures the same residual mean square error. For the short 

equalizer only five coefficients around the main tap were adapted through the whole 

length of the delay line and all the coefficients were used to generate the output 

signal. Let us note that at the beginning, when the short equalizer starts to adapt its 

coefficients, those at both ends of the delay line do not take part in generation of the 

output signal because they are equal to zero. However, if during the adaptation 

process, the full-length equalizer is subsequently switched on and off, all the 

coefficients become different from zero and in consequence all of them are used in the 

calculation of the output signal although, temporarily, only those in the middle of the 

delay line are further adjusted.  
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Figure 4  (VARIABLE  STEP SIZE AND VARIABLE LENGTH OF EQUALIZER) 

Shows the algorithm for the equalizer with automatically controlled length and step 

size when condition (1) 

∆≤− |)Re())(Re(| idny     and       ∆≤− |)Im())(Im(| idny            

with 75.=∆  is fulfilled. 

If the above condition is fulfilled, then all the tap coefficients are adapted; otherwise 

only three tap coefficients around the main one are adapted. 

,15=IN  52 =N  
410*5 −=γ I , 3

2 10*1 −=γ  
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8.  CONCLUSIONS 
 

                    From the above curve 1 and curve 2 of Mean Square Error, we conclude 

that the automatic step size control results in the saving of about 3000 iterations as 

compared with the algorithm with a constant step size.  Hence constant step size is 

lower than that which ensures the fastest convergence, however the steady-state mean 

square error is then only slightly larger than its minimum irreducible value. From the 

curves 1 and curve 3 of Mean Square Error, we conclude that that the filter control 

length results in substantial shortening of the initial convergence time.        

The proposed method of automatic control of the step size and filter length for the 

blind equalizer results in substantial acceleration of the equalizer's convergence. One 

has to admit that the propose procedure increases the computational complexity of 

the adaptive blind equalizer very slightly and thus can be easily implemented. 
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