Chapter 2

Dielectric Slab Optical Waveguide

2.1 Introduction

Dielectric slab waveguides are the simplest optical waveguiding structures. Because
of their simple geometry, guided and radiation modes can be described by simple
mathematical expressions. The study of slab waveguides is important in gaining
understanding of the wave-guiding properties of more complicated dielectric waveg-
uides. It must be noted, however, that slab waveguides are not only useful as models
for more general types of optical waveguides but they are actually employed for light
guidance in integrated optical circuits [39, 40, 41, 42, 43].

In this chapter, the theory of planar dielectric waveguides will be explained.
Starting with Maxwell’s equations, we will obtain the details of the propagation of

optical modes in a slab waveguide.
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2.2 Maxwell’s Equations
The propagation of electromagnetic waves in dielectric media is governed by Maxwell’s

equations which are [40, 41]:

0B

E4+— = 2.1

V xE + 5 0 (2.1)
oD

H-— = 2.2

V x T J (2.2)

V:-B =0 (2.3)

V:-D = p (2.4)

where
E is the electric field strength.
H is the magnetic field strength.
B is the magnetic flux density.
D is the electric displacement.
J is the electric current density.
p is the electric charge density.
The basic four quantities E, B, H and D are vectors in the three-dimensional

space. They are generally functions of both space and time.

2.3 Dielectric Slab Waveguide

Figure 2.1 shows a schematic diagram of a three-layer planar waveguide. The core

region of the waveguide, which is also called the film, is assumed to have refractive
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index n;. The film is deposited on a layer called substrate which has a refractive
index ny. The cladding on the film is called superstrate and it has a refractive index
ns.

The behavior of dielectric waveguides can be explained with the aid of the three-
layer model shown in figure 2.2. As can be seen, this figure is a longitudinal cross-
section of the slab waveguide shown in figure 2.1. In figure 2.2, we assume that the
dimension of the slab along the y-axis is considerably larger than its dimension along
the x-axis and that no material or field variation exist along the y-direction. Such a
waveguide supports a finite number of guided modes as well as an infinite number of
unguided radiation modes. In order to achieve mode guidance, it is necessary that
ny be greater than ny and ns that is ny > ny > n3. If ny = ng, the slab waveguide is
said to be symmetric. For the case of figure 2.2 where n; is different from ns, the slab
waveguide is asymmetric. For a symmetric waveguide, the guided modes are either
even or odd in their field distributions, as shown in figure 2.3. This waveguide can
be considered to constitute a limiting case of an asymmetric waveguide. As will be
analytically shown in the subsequent sections of this chapter, the number of guided
modes that can be supported by a slab waveguide depends on the thickness 2d, the

wavelength A\ and the indices of refraction, ny, ny and ns.
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Figure 2.1: Schematic Diagram of A Dielectric Slab Waveguide
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Figure 2.2: A Three-Layer Dielectric Slab Waveguide
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Figure 2.3: Electric Field Distribution in a Symmetric Slab Waveguide

2.4 The Wave Equation for a Slab Waveguide
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Consider the asymmetric slab waveguide shown in figure 2.2. Maxwell’s equations

can be written in terms of the refractive index n; (i = 1,2, 3) of the three layers and

by assuming that the material of each layer is non-magnetic and isotropic, that is

i = po and € is a scalar, we have [39, 40, 41]:

VxE =

VxH =

V.E =

V-H =

_ILLO

2
n;e€o

OH
ot
OE
at

(2.5)
(2.6)
(2.7)

(2.8)

To obtain the above equations, we used D = ¢E = n?¢,E, B = u,H, J = 0, and
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p = 0 in equations 2.1 to 2.4.

If we apply the curl operator to equation 2.5, we get:

VXxVxE = —MOan—H (2.9)
ot
O*E

= —/Longﬁoﬁ (210)

where equation 2.6 has been used to eliminate H. To simplify further, we use the

vector identity
VxVxA = V(V-A)- VA (2.11)

where A is an arbitrary vector field. Using equations 2.7 and 2.11, equation 2.10

can be simplified to:

O*E
2 _ 2
VE = Ho€oTl; W (212)

Writing the above equation in phasor notation (assuming a time-harmonic field

of the form e 7“*) we obtain [39, 40]:
VE + k2n?E =0 (2.13)

which is the familiar three-dimensional vector wave equation for a uniform dielectric
with refractive index n;. Here k, is the free-space wave number given by k, =
wy/Ho€o. The electric field vector E in equation 2.13 is a phasor quantity, which
is complex and has both a magnitude and a phase. In addition, E is in general a
function of space co-ordinates x,y, z and angular frequency w. E is independent of

time since the time dependence has been removed by the phasor transformation.
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We may simplify equation 2.13 by assuming that the structure is uniform in the y-
direction (see figure 2.1) and extends to infinity in the y-direction. This allows us to
assume that the field E is also uniform in this direction. Thus a% is replaced by zero.
If we further assume a z-dependence of the form /%%, with 3 as the longitudinal

propagation constant, equation 2.13 is simplified and takes the form:

’E
P (k2n? — BHE =0 (2.14)

The above equation is known as Helmholtz equation. In this case E is a function
of x only and the equation is a second order ordinary differential equation. The
propagation constant 3 can be expressed as [ = kon.sr, where n.ss is called the
effective index. The field of a slab waveguide is in general a superposition of Trans-
verse Electric (TE) polarized field and Transverse Magnetic (TM) polarized field.
The field components of the two polarizations are H,, F, and H, for TE-polarized

waves and E,, H, and E, for TM-polarized waves.

2.5 Transverse Electric (TE) Guided Modes

By using equation 2.14, the TE scalar wave equation for the three waveguide regions

takes the following form:

d’E,
dﬁy —-r’E, = 0 , <0 (2.15)

d’E,
d2y+q2Ey =0, 0<x<2 (2.16)

X

’E
' —p’E, = 0 , z>2d (2.17)

da?
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where 2 = 32 — k2n2, ¢> = k?n? — 5% and p? = % — k2?n3. For guided modes,
we require that the power to be confined largely to the central region of the guide
and no power escapes from the structure. The form of equations 2.15, 2.16 and
2.17 then implies that this requirement will be satisfied for an oscillatory solution in
the core region (¢ > 0) with evanescent tails in the cladding and substrate regions
(r?,p? > 0) (see figure 2.4). Assuming n; > ny > ng, it is straightforward to show
that for guided modes, the possible range of 3 is given by k,ny > 8 > kong > kong.
From equation 2.5, the other field components of the TE modes are obtained in

terms of £, as follows:

Hy= - E, (2.18)
Wt
j OE

H.o= = (2.19)

Thus, for guided modes the solution of E,, in the three regions is [39, 40]:

/

Ae’™ , o <0

Ey =1 Acos(qx) + Bsin(qx) ,0<xz<2d (2.20)

(Acos(2dq) + Bsin(2dq)) e P24 > 24

\

where A and B are constants. By examining equation 2.20, the boundary condition
on E, is satisfied by its continuity at both x = 0 and x = 2d. The other tangential

field component to the waveguide interfaces, namely H,, must also be continuous at
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Figure 2.4: TE Mode Patterns of a Slab Waveguide

these interfaces. From equations 2.19 and 2.20, we have:

/

rAe’® ,r <0

H, = w;]o q (—Asin(gz) + B cos(qx)) 0<z<2d (2.21)

—p (Acos(2dq) + Bsin(2dg)) e P20 > 24

\

The continuity condition of H, yields two equations. One at x = 0 and the

second at x = 2d, that is:
rA = ¢B (2.22)
and

q (—Asin(2dq) + B cos(2dq)) = —p (A cos(2dq) + B sin(2dq)) (2.23)
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Eliminating the ratio A/B from these equations yields [39, 40]:

tan(2dq) = alp+r) (2.24)

¢ —pr

This is the eigenvalue equation for the TE modes of the asymmetric slab waveg-
uide. Equation 2.24 is an implicit relationship which involves the wavelength, refrac-
tive indices of the layers and core thickness as known quantities, and the propagation
constant [ as the only unknown quantity. It can be shown that only certain discrete
values of  can satisfy the above equation, so this waveguide will only support a dis-
crete set of guided modes. The allowed values of 5 can be found from this equation
using numerical or graphical methods. After evaluating 3, the previous equations
are used to obtain the modal field in each layer. The symmetric waveguide (ny = n3)
can only support modes with even or odd electric field patterns. In this case it can

be easily shown that the eigen-value equation 2.24 reduces to (p = r):

2pq

tan(2dq) = Z_

(2.25)

An example of the field pattern of the T'E modes for a three-layer slab waveguide

is given in figure 2.4.

2.6 Transverse Magnetic (TM) Guided Modes

The wave equation for this polarization is obtained in terms of the magnetic field

component H, as:

d2H,

da?

—-r’H, = 0 , <0 (2.26)
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d2H
W;’+q?Hy =0, 0<z<2d (2.27)
(2.28)

d*H
>~ V’H, =0, x>2
ua

From equation 2.6, the other field components of the TM modes are obtained in

terms of H, as:
&}
E,=—"H 2.29
wnle, ( )
i OH
J 9% (2.30)

B, =—5——F—
wnie, Ox

Thus, the solution of H, in the three regions for the guided modes is [39, 40]:

CeT'I
(2.31)

Hy = Ccos(qz) + Dsin(qz)

(C cos(2dq) + Dsin(2dq)) e @20 > 24

\

where C and D are constants. The field component F, is obtained from equations

2.30 and 2.31 as follows:

e ,z <0
3
B, = 5& & (—C'sin(gz) + D cos(qx)) 0<x<2d (2.32)
— (C cos(2dq) + D sin(2dq)) e Pl=2d) > 94
\ 2

Continuity of F, at z = 0 and = = 2d leads to:
rC  qD

ng nt

(2.33)
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and

ni% (—C'sin(2dg) + D cos(2dq)) = ;—g’ (C cos(2dq) + D sin(2dq)) (2.34)

Eliminating the ratio C/D from these two equations results in [39, 40]:

2 2 2
tan(2dg) = L2 (2”?;p_+ Z“) (2.35)
nansq mpr

which is the eigenvalue equation for TM modes of an asymmetric slab waveguide.
An example of the T'M mode patterns for a symmetric slab waveguide is given in
figure 2.5. As evident from the figure, H, is continuous across a layer interface but
its derivative is discontinuous there, causing a sudden change in the slope of H,

there.

2.7 Mode Numbers and Cut-Offs

The notation TEy (and similarly TMy) is used to refer to a mode possessing N

nodes in the distribution of E, for TE modes and H,, for TM modes. The value of N

can be obtained by taking the argument of the tangent in the eigenvalue equations

2.24 and 2.35 to be (2dg — N7). Since n; > ny > ng, the cut-off condition is given
by [39]:

B = kong (2.36)

This corresponds to loss of optical confinement due to loss of exponential decay

away from the waveguide in the substrate. The resultant effect is a field-spreading

throughout the substrate region.
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Figure 2.5: TM Mode Patterns of a Slab Waveguide

The cut-off conditions for TEy and T My modes can be found by using the
above definitions for the mode numbers and cut-offs. Substituting equation 2.36
into equation 2.24 along with the appropriate expressions for p, ¢, r at cut-off, the

cut-off condition for the TE modes is stated as [39]:

n2 _ n2 1/2
tan(2dk.(n? — n2)"/2 — N7) = ( 2 g) (2.37)

where k. corresponds to the cut-off wave number for T'Ey. In terms of the normal-

ized frequency (v), given by:

v = kod(n? — n2)'/? (2.38)
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the cut-off value v, for the TEy mode is [39]:

1 | [(nE—n3 1/2
v, = — tan 5 5
2 ny — ns

where tan™! is restricted to the range 0 — /2. Equation 2.39 can be used to obtain

N
+ TW (2.39)

M, the number of TE guided modes and is found to be [39]:

1 2 2\ 1/2
M= {— (21} — tan ! [(”g ”g) (2.40)
™ ny —na int

where the subscript int indicates the next largest integer.

The corresponding cut-off condition and number of guided TM modes are given

as follows [39]:

1 ny\2 [ n2 — n? 1/2 N7
c==tan"! (—) 23 — 2.41
Ve = ptall [ N3 (n%—n% T (241)

M= {% (21} — tan ! [(%)2 (Z% - Z§> 1/2]) } (2.42)






