KING FAHD UNIVERSITY OF PETROLEUM & MINERALS Electrical Engineering Department

EE 380 - Control Engineering

Experiment # 8

Speed Control with a Proportional plus Integral Controller

OBJECTIVES:

The objective of this experiment is to demonstrate that the use of a Proportional plus Integral (PI) controller will eliminate the steady state error.

APPARATUS:

- 1. Analogue Unit 33-110
- 2. Mechanical Unit 33-100
- 3. Power Supply +/-I 5V dc, 1 .5A, +5V dc, 0.5A

INTRODUCTION

The simple speed control system with a proportional controller of Fig. 1, has been investigated in Experiment 4. The results demonstrate that increasing the forward path gain will reduce the error V_e between the reference voltage V_{ref} and the speed voltage V_s . A possible problem associated with increased gain is the saturation of the power amplifier. This problem can be mitigated by the use of a PI controller. Provided that there is an integrator in the forward path, the system will always adjust so that V_e is zero, and hence the speed voltage V_s always equals V_{ref} .

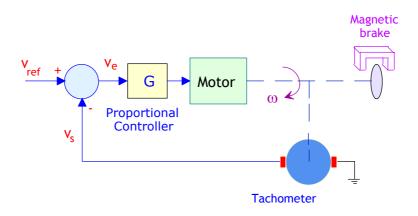


Fig. 1 Closed loop speed control system

PROCEDURE

Part I: PI Controller Implementation

A PI controller speed control circuit is given in Fig. 2 with connection diagram in Fig. 3.

- 1) Connect the circuit of Fig. 3 with controller amplifier feedback resistor 100K, which gives forward gain (G=1), and switch the integrator OFF. Set P_2 and P_3 at zero and P_1 at 100.
- 2) Set SW1 up to +10 and adjust P_3 to give 1000 r/min (31 r/min output), and turn P_2 slightly.
 - If the speed falls slightly, the feedback is negative as required.
 - If the speed rises slightly, change the polarity of the tachometer supply to P_2 .
- 3) Set P_2 to 100 and readjust P_3 to give 1000 r/min.
- 4) Measure V_e , V_{ref} , and v_s . Note that the speed voltage V_s is much less that V_{ref} because the forward gain is low (G=1).
- 5) Using the voltmeter set P_3 (V_{ref}) to the value of V_s for 1000 r/min (about 2.5 V) and the speed will fall to about 500 r/min.
- 6) Change the controller feedback resistor to $500K\Omega$ (G=5), and comment on the value of the motor speed compared to Step 4.
- 7) Reduce the controller feedback resistor to $100K\Omega$, set P₅ to 100, and switch the integrator ON. The speed will increase so that $v_s = v_{ref}$ and v_e will fall approximately to zero. The integrator is now supplying exactly the drive so that v_s matches $.v_{ref}$.

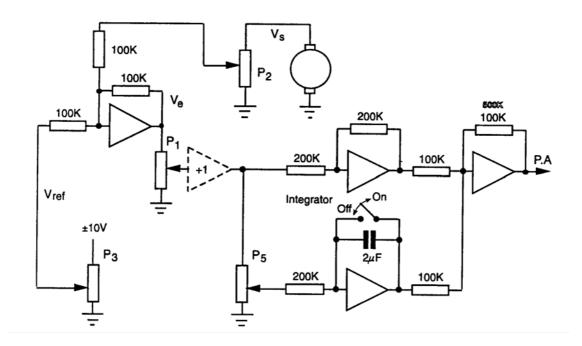
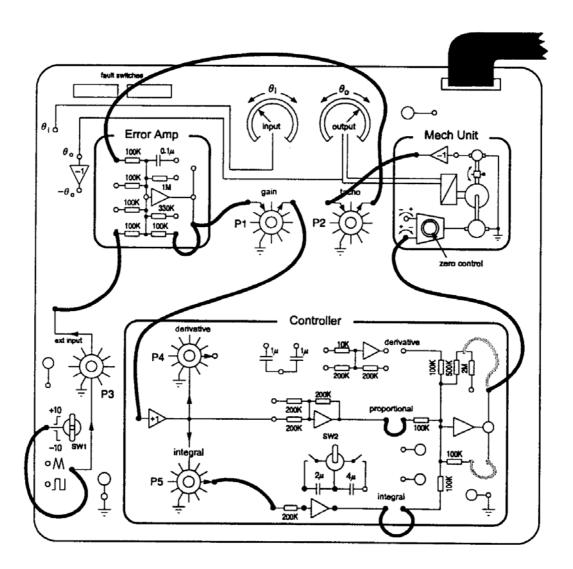



Fig. 2 Speed Control Circuit

Part II: Response to Output Loading

The common requirement for a speed control system is to maintain a constant speed against load variations.

- 1. Arrange the system as in Fig. 3 with brake OFF, integrator ON, P_5 to 100, P_3 set to give 1000 r/min, and controller feedback resistor $100K\Omega$.
- 2. While the system is in operation, set the brake quickly to full ON.
- 3. Comment on the behavior of the motor speed.
- 4. Set the brake quickly OFF.
- 5. Comment on the behavior of the motor speed.
- 6. Change the controller feedback resistor to 500 K Ω , and repeat Steps 2 to 5.
- 7. Comment on the effect of increasing the forward path gain in Step 6.

Report:

- 1) What is the effect of increasing the gain from G=1 to G=5 on the performance of the closed-loop system of Part I ?
- 2) Discuss the effects of the use of PI controller on the motor speed control system.
- 3) What is the effect of increasing the gain from G=1 to G=5 on the performance of the closed loop system of Part II ?
- 4) Use SIMULINK to simulate the behavior of the motor speed control system shown in Fig. 4, with a PI controller. (Assume $K_t = 1$ volt/rad/sec). [set $K_p = 0, 1, 4$; and let $K_I = 0, 1, 2, 5, 8$]. Describe the effect of the integral control action. [using a unit-step reference input and no disturbance].
- 5) **Design** the PI controller such that the following specifications are met:

$$K_v = 10; \zeta = 0.5$$

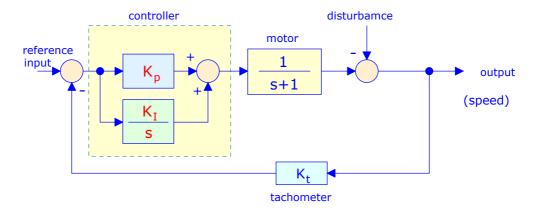


Fig. 4 Speed control system with PI control

- 6) **Verify** that the specifications are met via a time-domain simulation.
- 7) Using the settings of (5), comment on the behavior of the system when:
 - a step disturbance is applied after 1 second from the start of the simulation [using a unit-step reference input] .
 - a step disturbance is applied after 1 second from the start of the simulation [using a unit-ramp reference input] .
 - a unit-ramp disturbance is applied after 1 second from the start of the simulation [using a unit-ramp reference input] .
 - a unit-ramp disturbance is applied after 1 second from the start of the simulation [using a unit-step reference input] .