
EE 390 Lab Manual, EE Department, KFUPM

Experiment #8

Flight86 Application I – Traffic Lights

8.0 Objectives:

The objective of this experiment is to simulate a traffic lights system.

In this experiment, you will do the following:

• Create software time delays

• Write programs to simulate a traffic lights system

• Assemble, download, and test your program on the trainer board

8.1 Equipment and Software

• Flight86 Trainer and Application Boards

• PC with Flight86 Monitor program

• Assembler and conversion utilities (exe2bin, bin2hex)

8.2 Introduction:

It is often necessary to control how long certain actions last, this can be achieved using
software delays, or more accurately by the use of a timer.

In this experiment we will simulate a traffic lights system that requires use of software
time delay.

8.2.1 Creating Software Delays

In the various states of the traffic lights sequence, lights have to be ON or OFF for a
clearly defined time in seconds, so our program must contain a means of measuring one
second. The easiest way, which does not need any further hardware devices, is a software
delay.

If we create a program that loops around itself, and does this for a fixed number of times,
for a given processor, running at a given clock rate, this process will always take the
same time. All we have to do is write such a multiple loop so that it takes one second to
complete. This process is illustrated in the flowchart below:

 1

EE 390 Lab Manual, EE Department, KFUPM

Now the question is: how do we calculate the ‘large number’ to be loaded in the register
for the loop?

To calculate a specific time delay we need to calculate the number of times the program
will loop around itself. To do this, we need to know how many clock cycles are required
to carry out a particular instruction(s), and the processor clock rate which ultimately
decides how long an instruction takes to execute.

Let’s examine the code below. This code can be used to produce a certain delay value.
We will try to find the value of N such that this code produces a delay of approximately
100ms.

DELAY: MOV CX, N ; Load CX with a fixed value
DEL1: DEC CX ; decrement CX
 JNZ DEL1 ; and loop if not zero
 RET ; when CX=0, then exit

We can see in the code above that instructions which get repeatedly executed (inside the
loop) are DEC CX and JNZ DEL1. The number of clock cycles required to execute
these two instructions once, are:

DEC CX 2 clock cycles
JNZ DEL1 16 clock cycles
Total : 18 clock cycles

Note: If we also consider the time required to execute the instructions outside the loop,
i.e., the first and the last instructions above, then we can get a more accurate time delay.
But we will ignore this, since these instructions are executed only once.

Number of times this loop is executed is: N
CPU clock rate for the Flight86 Trainer system is: CLK = 4.9152 MHz
Time period for one clock cycle, TCLK = 1/(4.9152 x 106) = 203.5ns
(Total clock cycles) x (Number of times loop is executed) x TCLK = 100 ms
18 x N x 203.5ns = 100 ms; → Solving for N, we get N = 27300 = 6AA4H

Therefore, if the above loop is executed N = 27300 times we get a delay of 100ms
approximately. Now, this loop can be used to produce a delay of 1 second if it is
executed 10 times. That means, there will be two loops – one that produces 100 ms delay,
and the other that executes this loop 10 times to produce 10 x 100ms = 1 second.

 2

EE 390 Lab Manual, EE Department, KFUPM

8.3 Exercise: Simulating a Traffic lights system

The LED’s on the application board are arranged in two groups of 4 - Red, Amber,
Green, and a Yellow. Using these two sets of four lights we can easily simulate the traffic
lights at a busy cross road, one set representing the main road, the other set the side road.

Red1 Amber1 Green1 Yellow1 Red2 Amber2 Green2 Yellow2
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

The traffic lights system must be simulated according to the following sequence which
must be repeated continuously (the Yellow LED’s are not used):

Main Road Side Road
Signal Duration Signal Duration Bit value
Red 1 15 sec Green 2 15 sec 1 0 0 0 0 0 1 0
Red 1 03 sec Amber 2 03 sec
Red & Amber 1 03 sec Red 2 03 sec
Green 1 25 sec Red 2 25 sec
Amber 1 03 sec Red 2 03 sec
Red 1 03 sec Red & Amber

2
03 sec

Table 1: Sequence of lights

The bit value represents the output pattern to turn on the required LED’s.

An easy way to implement the above sequence of lights repetitively is to set all the data
up in a table, and advance through the data step by step, until the end of the table is
reached, when it can be repeated. The table can contain both the required LED pattern,
and the time that pattern is to be manipulated. For the above case, the table would be:

Data, time
82h,150

LED pattern 82h (10000010), maintained
for 150 x 100ms (= 15 sec).

The delay is implemented in multiples of 100 ms.

Table 2: Data for traffic lights sequence

 3

EE 390 Lab Manual, EE Department, KFUPM

8.4 Review

1. Review the hardware specifications of the Flight86 system described in the last

experiment.

2. Read about instruction clock cycles from your text book.

8.5 Pre-lab:

1. Complete the bit-value output pattern in Table 1.

2. Complete Table 2 for the corresponding bit-value pattern in Table 1.

Table 2 can be implemented in assembly language using the “DB” (define byte)
assembler directive, as shown below:

TABLE DB 82h, 150 ; RED1 GREEN2 15 sec
 DB , ; RED1 AMBER2 03 sec
 DB , ; RED/AMBER1 RED2 03 sec
 DB , ; GREEN1 RED2 25 sec
 DB , ; AMBER1 RED2 03 sec
 DB , ; RED1 RED/AMBER2 03 sec

3. Complete the remaining entries of this table and place it after the last instruction

of your program that you will write for the Lab Work.

4. Write a program to produce a delay of 5 seconds using the code shown below

which produces a delay of 100ms.

DELAY: MOV CX, 27300 ; Load CX with a fixed value
DEL1: DEC CX ; decrement CX
 JNZ DEL1 ; and loop if not zero
 RET ; when CX=0, then exit

 4

EE 390 Lab Manual, EE Department, KFUPM

8.6 Lab Work:

1. Write your program according to the flow chart shown below.

Initialize

Load offset of data
table

Load LED bit
pattern from table

Load delay value
from table

Output bit pattern
to LED’s

Implement delay

Increment table
pointer

Load number of
entries (in table)

Initialize the 8255

If the table has 6
entries, then load
6 into a register

Program Logic

Reached
end of table?

No

Yes

2. Include the following initialization code at the beginning of your program. (See

previous experiment).

INIT:
 MOV AL, 99 ; set up Port A & Port C IN, Port B OUT
 OUT 07, AL ; and output this word to control Port
 MOV AL,0 ; data zero
 OUT 03,AL ; output to Port B to ensure all LED’s off

 5

EE 390 Lab Manual, EE Department, KFUPM

3. Use an editor to write to your program. Name your file as traffic.asm

4. Assemble and link your program using the TASM assembler to produce

traffic.exe.

5. Convert the traffic.exe file to binary format using the exe2bin.exe program by

typing exe2bin traffic.exe at the DOS prompt.

6. Convert the traffic.bin file to traffic.hex using the bin2hex.exe program by typing

bin2hex traffic.bin at the DOS prompt.

7. Start the Flight86 monitor program.

8. Download traffic.hex to the Flight86 controller board by typing at the ‘-‘ prompt

: C:\EE390\FLIGHT86\traffic.hex

9. Before you run your program make sure the mode switches are in the correct

position.

Switch SW2A – Switch position
All other switches - OFF

10. Now enter G 0050:0100 at the ‘-‘ prompt to run the program.

11. Check the sequence of lights and the time duration generated by your program

and make sure it is working correctly.

 6

	Experiment #8

